

Biogeochemical Application in Nuclear Decommissioning and Waste Disposal BANDD

Joanna Renshaw
University of Birmingham
PI: Rebecca Lunn
University of Strathclyde

BANDD: Overview

- £1.9M EPSRC Energy Programme
- Two main applications for biomineralisation processes:
 - The use of biomineralisation to reduce subsurface permeability
 - The use of microbial biomineralisation processes for solid-phase capture of radionuclides
- 4 PDRAs: Glasgow, Strathclyde, Birmingham
- 3 PhDs: Manchester, Cambridge, Strathclyde

Uptake of Radionuclides by Phosphate Minerals

Interactions between Microbes, Minerals & Radionuclides

Engineering

 Microbially-mediated reduction of minerals alters their reactivity towards redox-sensitive radionuclides.

Biomineral barriers to flow

- Fractures may provide pathways for radionuclide migration
- Unloading fractures in the Excavated Damage Zone may cross-cut existing fracture networks
- Traditional cementitious grouts not suitable for fine aperture fractures
- Safety case is likely to require rock mass hydraulic conductivities in the range of 10⁻⁹ to 10⁻¹⁰ m/s
- The challenge is to develop grouts that
 - can seal very fine fractures
 - provide good penetration into the rock
 - are strong
 - are durable

Microbial Induced Calcite Precipitation **UNIVERSITY OF BIRMINGHAM**

Stimulate bacterial calcite formation to clog fractures in rock → limit fluid flow through the fracture.

In situ permeability reduction of the host rock \rightarrow limit radionuclide

migration

$$NH_2CONH_2 + 2H_2O \xrightarrow{urease} 2NH_4^+ + CaCO_3 + 2Cl^-$$

Develop novel MRI techniques to image & quantify bioprecipitation

1D magnetic resonance profiles depicting the porosity along the column

$$t = 0 - t = 65 h$$
 ---.

Laboratory Tests

Modelled distribution of fracture transmissivity after grouting, normalised to initial value (i.e. T/T_0)

