



R

F

G



# UNIGRAF Understanding and Improving Graphite for Nuclear Fission

Loughborough: Houzheng Wu, Roger Smith Bristol: Peter Flewitt, Keith Hallam Oxford: James Marrow



GSI Helmholtzzentrum für Schwerionenforschung GmbH







### **HTR-PM Commercial Demo Reactor Update**

• 14. 09. 2016: Second pressuriser installed.



 19.06. 2017: Successfully commissioned 220kV electrical transmission for HTR-PM



- 08.06.2017: All iso-graphite components had been installed for the 2<sup>nd</sup> reactor.
  - Core diameter: 3m
  - Height: 11.8m
- 30.07.2017: successfully commissioned turbine generators





# **Opportunity and Methodology**



### **Eight Graphites (different Filler and Binder)**

- Characterization over length scales:
  - Dimensional change, Young's modulus, thermal expansion, tensile strength, toughness
  - HRTEM, nano-indentation, Raman, EELS
- Modelling at the meso-scale
  - MD atomistic simulations (up to  $\sim 50 \text{ nm}^3$ ) to predict physical and mechanical properties
- Testing at the meso-scale
  - In situ nano-indentation, pillar compression and Nano-XCT
  - In situ TEM testing with DIC and diffraction strain measurement

- Producer of graphite for the Chinese HTR-PM programme,
- Funding the irradiations at ORNL to select graphites



### Experimental nuclear graphite grades

Experimental nuclear graphite grades included in Sinosteel-ORNL irradiation programme.

- SNG342, SNG623, SNG742, SNG722, SNG7420, SNG3420, SNG545, SNG220.
- All iso-moulded; main difference in coke size, amount of binder, sources of raw materials, impregnation/graphitisation conditions, density, porosity.
- Most grades aim for HTGRs; a couple of grades for TMSR.



# **Typical graphite billets**





### **Neutron irradiation programme**





### Neutron irradiation programme (cont.)



### **Neutron irradiation timeline**

Screening irradiation Phase – focus of UNIGRAF

- Irradiation completed (Irradiation at 900 °C with neutron fluence: 4.4, 4.5 & 8.1 X 10<sup>25</sup> n/m<sup>2)</sup>
- PIE completed and report in preparation
- Irradiated samples now accessible for UNIGRAF researchers
- Medium dose irradiation phase 1B
  - Most irradiation completed
  - Most PIE completed and data analysis in progress
  - Some irradiated samples accessible from 2018
- Other samples will be available from 2019 and beyond
  - High dose
  - creep



### Heavy ion irradiation completed

| Graphite<br>grades | Au<br>5.9MeV/u  | Ca<br>4.8MeV/u | C<br>5.9MeV/u | Sm<br>4.8MeV/u |
|--------------------|-----------------|----------------|---------------|----------------|
|                    | Fluence (i/cm²) |                |               |                |
|                    | 1e11            | 1e11           | 1e11          |                |
| SNG342             | 1e12            | 1e12           | 1e12          | 1e12           |
| SNG 023            | 1e13            | 1e13           | 1e13          |                |
|                    | 5e13            | 5e13           | 5e13          | 5e13           |



### Ion irradiation in Surry

- Not started yet
- To be done in later part of UNIGRAF



### Progress

- Research on non-irradiated samples on going, SNG623 completed
  - Microstructure
  - Pore structure
  - Micro-scale testing
- Research on ion irradiated samples on going
  - Microstructure
  - Micro-scale testing
- Research on neutron irradiated samples start in Oct 2017 at ORNL
  - Microstructure
  - Micro-scale testing
- Modelling on going
  - Atomic structure of mesoscopic structure in graphite
  - Nanoindentation damage



### Microstructre & mesoscopic structure in isographite (SNG623)





### Mesoscopic structure inside coke

### View along (0001) plane:







### Mesoscopic structure inside coke

### View perpendicular to (0001) plane:

200nm



510nm





# "crazy paving" mesoscopic structure proposed





# Nano crystalline graphite slabs

0.2 µm 0.000 K 108936 atoms 34207 visible 34207 C

Potential energy

6 50

-8.00

-7.25

- Experimental result:
  - Layers of 'crazy paving' slabs.
  - Layers thickness: 20-30 nm
  - Slab diameter: 100-150 nm
- Variation of the c-axis over long range



- (12 graphene layers)
- Generate grain boundaries with a geometric relaxation method.

Loughborough

University

- 108,936 atoms
- **3 voronoi cells**

-5.00

5.75

# Nano crystalline graphite slabs 15° grain boundary Top layer Second layer

### **Composite of two layers**





- Each unique layer is prepared and geometrically relaxed separately. Layers assembled into large graphite structure.
- Final relaxation in MD. University

### Nano crystalline graphite slabs

32° grain boundary

### **Top layer**





High angle boundary. Armchair meets zigzag edge.



.

### **Composite of two layers**





- Each unique layer is prepared and geometrically relaxed separately. Layers assembled into large graphite
- structure.
- Final relaxation in MD. University

# Nano crystalline graphite slabs

### **Triple junction grain boundary**

### **Top layer**





### **Composite of two layers**





- Each unique layer is prepared and geometrically relaxed separately.
- Layers assembled into large graphite structure.
- Final relaxation in MD. University



### **Graphite in binding matrix**







10nm







# **Machined surface**

0 nm

- Experimental image shows a machined surface.
- The mechanical stress causes the graphite units to bend in various angles.
- Graphene layers bent into a U shape, are observed.

 MD simulation: compression of a 400 Å periodic slab.



# **Crack with bridge**



- On the left, the bridging graphite layers near the tip of a microcrack appear sharp.
  But at higher magnification reaching to atomistic level, smooth transition is seen, as shown in right hand side
- c\_pe -8
- Relax a simple bridge model in MD.
- Observe similar smooth bends of the basal planes.

Loughborough University

# **Crack with bridge**

000000000000



# **Molecular Dynamics**



Loughborough Univegsityrough University