

Carbides for Future Fission Environments CaFFE

2017 Upate

Ian Farnan

Department of Earth Sciences & Cambridge Nuclear Energy Centre

CAFFE Research Team

Universities:	Cambridge, Imperial, Manchester
Industrial:	Westinghouse, NNL, Rolls-Royce
Facilities:	NNUF Dalton Cumbria, Archer HPC
Personnel:	Ian Farnan, Paul Bristowe, Kevin Knowles (UCAM) Shafqat Shah (PDRA), Hassan Qarra (PhD), Dhan-sham Rana (PhD)
	Bill Lee, Mike Finnis, Na Ni (ICL) Eugenio Zapatas-Salvas (PDRA), Ricky Hutchings (PhD)
	Philip Frankel, Michael Preuss, Simon Pimblott, Enrique Jimenez- Melro (UMAN), David Downton (PDRA) , Joe Ward (PhD)
Collaboration:	SCK-CEN/KU Leuven (Konstantza Lambrinou/J. Veugel) CARAT (USDoE/Westinghouse), EU IL TROVATORE (H2020)

Accident Tolerant Fuels

Clads

Zircaloy-4, 80 min

ZIRLO[™], 80 min

Hi T steam tests on zircalloys [Y. Lee (KAIST)]

M5[®], 80 min

Zircalloy is an excellent material in normal operating conditions for LWRs.

In a LOCA situation, rapid & strongly exothermic reaction with steam.

Reduction in strength with temperature & irradiation growth is a limit on burn-up.

Main safety factor in design basis accidents

Carbides for Future Fission Environments New materials for cladding

CAFFE Research Project: Objectives

Increasing yields of layered carbides

- substitution onto M or A site
- creating a quaternary MAX phase
- increased yields to 60-70 wt% MAX phase

DOI: 10.1111/jace.14870

ORIGINAL ARTICLE

Synthesis and physical properties of $(Zr_{1-x},Ti_x)_3AlC_2$ MAX phases

Eugenio Zapata-Solvas¹ | Mohammad A. Hadi² | Denis Horlait^{1,3} | David C. Parfitt⁴ | Axel Thibaud¹ | Alexander Chroneos^{1,4} | William E. Lee¹

DOI: 10.1111/jace.14742

ORIGINAL ARTICLE

Experimental synthesis and density functional theory investigation of radiation tolerance of $Zr_3(Al_{1-x}Si_x)C_2$ MAX phases

Eugenio Zapata-Solvas¹ | Stavros-Richard G. Christopoulos² | Na Ni¹ | David C. Parfitt² | Denis Horlait^{1,3} | Michael E. Fitzpatrick² | Alexander Chroneos^{1,2} | William E. Lee¹

SCIENTIFIC REPORTS

OPEN Point defect formation in M_2AIC (M = Zr,Cr) MAX phases and their tendency to disorder and amorphize

Received: 20 February 2017 Accepted: 31 July 2017 Published online: 29 August 2017

UNIVERSITY OF CAMBRIDGE

Nuclear Academics Meeting, Lancaster University, 4-5 September 2017

S. H. Shah & P. D. Bristowe

Quinary substitutions: DFT & preparation

DFT calculations predicted limited stability of quinary compositions wrt ternary end members

Importance of finite temperature DFT

in progress (Sam Asadi, Mike Finnis)

Proton irradiation: Zr₃AIC₂, Zr₂AIC

Manchester DCF - Dave Downton, Joe Ward, Phillip Frankel

- Hot-pressed MAX phases have been electric discharge machined (EDM) cut into 2 x 2 x 20 mm matchstick samples. One face of each matchstick is polished.
- Matchsticks from various samples are placed on a beamline at the Dalton Cumbrian Facility (DCF) and proton irradiated.
- Beam energy of 2 MeV at 4 μ A to 0.01 and 0.1 dpa (1.78 x 10¹⁸ protons cm⁻², 1.5 x 10⁻⁶ dpa s⁻¹). 12 μ A is being tested for irradiation to 1 dpa (1.71 x 10¹⁹ protons cm⁻², 6.23 x 10⁻⁶ dpa s⁻¹).
- Test temperatures are 350 and 575 °C.

Proton irradiation: Zr₃AIC₂, Zr₂AIC

Manchester DCF - Dave Downton, Joe Ward, Phillip Frankel

So far 0.01 and 0.1 dpa, 1 dpa in mid-September

Future activities

End of Programme Meeting Advanced Materials Approach to Cladding for Accident-Tolerant Fuels Queens' College Cambridge

24th – 26th March 2019

CaFFE - Carbides for Future Fission Environments

