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Why graphite?

= A key structural material in advanced nuclear reactors for
electricity and process heat generation

= Moderator & reflector to slow down fast neutrons

Fast neutron flux reduce exponentially with distance —
thermal flux?

Neutron flux and thermal gradient — internal deformations

= Typical components — quite intricate
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Advanced designs — heading to Gen IV

» HTR development: Dragon (OECD), AVR, THTR

= Peach Bottom, Fort St Vrain

= HTR-10, China;

* HTTR, Japan

» PBMR development, S. Africa

= HTR-PM development, China

» Other HTR concepts: France, Russia, USA, NGNP (Areva)
= VHTR

All HTRs use graphite as reflector. Prismatic core design
employs graphite for fuel matrix; pebble-bed design employs
graphite in fuel ball matrix
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Example graphite reactor - HTR-PM

Z. Zhang, etc., Nuclear Eng & Design
239(2009) 1212-19

= Operating temp. ~750°C, potentially 900°C
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Harsh environment inside HTGR

= Working environment
* Pressure of He : 11-70 bar
« Temperature: Inlet temp. >250°C; outlet temp. >700°C

« Oxidants: leaking water and air
« Radiation: neutrons

= Material property change induced by irradiation
* Internal shrink stress
 Thermal stress
* Irradiation-induced swelling:
» Reduction of modulus, strength, etc.
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High strength

High reliability

Good thermal conductivity
Large components possible
Delicate features possible

Tend to be more brittle
« Low crack propagation resistance
+ High sensitivity on flaw
« Fatigue could be concerned
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Opportunity and Methodology
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Samples and methods

« 8 grades of nuclear graphite
» |sostatically pressure-moulded

« Different in coke size, amount of binder, sources of raw
materials, impregnation/graphitisation conditions, density, porosity

>
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e Grain sizes

e Lattice
parameters

* High-temp.
behaviour

¢ Defect
information

e Disordering
(basal planes)

e Filler/Binder
e Polarising

e Micro-porosity ® Microstructural
¢ Grain sizes features
e Lattice defects

e Distribution of

filler particles
e Porosity

* Chemical
bonding

Raman spectroscopy [:!
X-Ray Diffraction
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Progress

RA on microstructure characterisation at L'boro started in March
2016

12

RA on microscale testing at Bristol/Oxford started in August 2016
RA on modelling at L'boro started in September 2016

Heavy ion irradiate graphite done by GSI

All virgin graphite samples are ready

1st batch of neutron irradiated graphite at 900°C is available now,
and 2"d batch in April 2017.
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FIB Sample preparation workflow

1. Deposition of protective
layer

2. Trench production and
cross-section cleaning

3. Tilt and cut off lamella
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Microstructure of binder

1. Graphitised area/
particle shows
Mrozowski
cracking

2. Chaotic structure

3. Quinoline
insoluble

4. Crack

Virgin sample #2,
STEM-BF
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Ca ion irradiated graphite
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Ca ion irradiated graphite
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Molecular dynamic modelling the neutron

knock on effect in graphite
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EELS simulations on vacancies & interstitials

= Goal:

« Understand how many and what kind of defects in a
graphite
* Provide scientific base for de-convoluting EELS spectrum

* Method:
« Use DFT to simulate EELS spectrum on graphite systems
 DFT code: CASTEP (http://www.castep.org/)
* Provide coordinates of a graphite system
* Yield EELS spectrum for each atom in the system
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EELS spectrum with 1 vacancy

0.0004w . | T

— 63 atoms with 1 vacancy
64 atoms perfect lattice

0.0002 —

0.0001

Little effect on atoms
which are far away
from the vacancy.

Spectrums for atoms
close to the vacancy
(shaded) are quite

different from others.

B Loughborough
University



EELS spectrum with 1 interstitial (1)

0 0006m | —— * There are many kinds
- — 05 atoms with 1 interstitial Of InterStItlaIS In some
0.0005 1 — 64 atoms perfect lattice CaSGS, the InteI"StItIa|S

have little effect on
other atoms.
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Multi-scale deformation & fracture (by Liu etc.)

= Nano-scale (in situ neutron diffraction)
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= |attice strain is an order of magnitude less than bulk strain, i.e. the
microstructure accommodates the local strain
= Non-linear relation at higher tensile strain
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Different part of the

microstructure accommodates

different amount of strain, i.e.
compliance variance across

the loaded volume
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Non-uniform strain distribution
* Local strain concentration
« Local damage initiation
- 1400Courtesy of Dr. Vertyagina (Oxford University)
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Multi-scale deformation & fracture (by Liu etc.)

= Micro-scale (in situ micro-cantilever testing)

Prior to fracture

« System calibrated using Si;

« Larger deformation than
macro-scale

* Progressive fracture

* Unload leads to permanent
deformation

INGSM-16, Nottingham B Loughborough
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