# **UKAEA's NNUF Facilities**

# **Materials Research Facility**

# Gamma detectors (ADRIANA)

**Martin O'Brien** 







# **ADRIANA**



#### (Advanced Digital Radiometric Instrumentation for Applied Nuclear Activities)

- State of the art equipment for measurement of radioactive material
- Lancaster, Liverpool and Culham equipment funded by NNUF/EPSRC
- Liverpool and Culham: advanced HPGe systems
- Lancaster: Neutron detection systems

### **Examples: Activities in 2016**

- Student training and projects
  - Environmental soil samples from Dounreay and neutron source irradiation facility characterisation (Lancaster)
  - Generalized gamma spectrometry simulator for improved isotope identification (Birmingham/AWE)
  - HPGe detector characterisation, validation and testing using automated computational methods (Birmingham)
- Equipment lent to ISIS to measure gamma environment (STFC)
- UKAEA uses for JET and for support & testing instrumentation for MRF hot cell sample receipt & assay

### **Under discussion:**

- Loan portable monitor to measure hold up in Sellafield glove boxes
- Oxford School of Geography and Environment measurements of U, Th and K in soils

### Culham's ADRIANA systems









# **Materials Research Facility**

- opened by Jo Johnson May 2016



To provide hot cells to process radioactive material and shielded instruments for analysis – intermediate between university and NNL/Sellafield capabilities

- Now: analysis of slightly active and inactive material already used by Birmingham, Loughborough, Oxford, Queen Mary, Strathclyde, industry
- Hot cells and <u>shielded</u> instruments available from early 2017
- Continually expanding capability: £5M from Sir Henry Royce Institute (£1M this FY) plus further investments expected from NNUF.





Now (low activity samples)

Focused Ion Beam Nano-indenter SEM (with EDX, EBSD, TKD) AFM XRF monitor

Thermal Desorption Spectroscopy

**Glove Boxes** 

10 kN tensile testing





Now (low activity samples)

Focused Ion Beam Nano-indenter SEM (with EDX, EBSD, TKD) AFM XRF monitor

Thermal Desorption Spectroscopy

**Glove Boxes** 

10 kN tensile testing

#### Early 2017

hot cells equipment

Slow cut saw, Shear cutter Grinding and polishing Hot Isostatic Press & cold resin sample mounting In-cell microscopes for sample evaluation Balances (load cells)





#### Now (low activity samples)

Focused Ion Beam Nano-indenter SEM (with EDX, EBSD, TKD) AFM XRF monitor

Thermal Desorption Spectroscopy

**Glove Boxes** 

10 kN tensile testing

#### Early 2017

hot cells equipment

Slow cut saw, Shear cutter Grinding and polishing Hot Isostatic Press & cold resin sample mounting In-cell microscopes for sample evaluation Balances (load cells)

#### Late spring 2017 onwards

FIB, SEM, etc. in shielded cells

Mechanical and Thermo-physical testing in shielded cells micro-hardness; static, fatigue, creep; fracture toughness Dilatometry. Thermal conductivity / diffusivity. DSC / TGA. Gas pycnometer

Improved sample preparation EDM, Electro-polishing, TEM disk preparation

Tritiation of samples and TDS, permeation and other T measurements





#### Now (low activity samples)

Focused Ion Beam Nano-indenter SEM (with EDX, EBSD, TKD) AFM XRF monitor

Thermal Desorption Spectroscopy

**Glove Boxes** 

10 kN tensile testing

#### Early 2017

hot cells equipment

Slow cut saw, Shear cutter Grinding and polishing Hot Isostatic Press & cold resin sample mounting In-cell microscopes for sample evaluation Balances (load cells)

#### Late spring 2017 onwards

FIB, SEM, etc. in shielded cells

Mechanical and Thermo-physical testing in shielded cells micro-hardness; static, fatigue, creep; fracture toughness Dilatometry. Thermal conductivity / diffusivity. DSC / TGA. Gas pycnometer

Improved sample preparation EDM, Electro-polishing, TEM disk preparation

Tritiation of samples and TDS, permeation and other T measurements

### > 2 years

Further testing equipment

2 additional hot-cells, flexible inner containments Fitting in hot-cell Fitting in instrument cell To be used as glove box

#### Beryllium glovebox line





# As well as providing these facilities we are keen to collaborate on related research (experiments and modelling)

- Radiation detection neutrons and gammas
- Tritium R&D permeation, implantation/adsorption/outgassing, storage options, etc.
- Radiation Damage (steels, tungsten)
  - Techniques microscopy, micromechanics
  - Ion irradiation cf. neutrons
  - Length-scale effects
  - Gases in irradiated materials
  - etc.





### For more details

### MRF

www.ccfe.ac.uk/mrf.aspx

\* monica.jong@ukaea.uk steven.van.boxel@ukaea.uk \* chris.hardie@ukaea.uk \* martin.obrien@ukaea.uk

### **Tritium**

\* barry.butler@ukaea.uk

### Gamma detectors

lee.packer@ukaea.uk bethany.colling@ukaea.uk ian.jenkins@ukaea.uk

\* = at this meeting







