

PACIFIC Providing A nuclear fuel Cycle In the UK For Implementing Carbon reduction

Project Overview and Aims

- PACIFIC uniquely combines the research communities in **Nuclear Fuels** and **Nuclear Separations and Recycle** to create a holistic approach to nuclear fuel cycle research.
- Aims to build a sustainable academic consortium in nuclear fuel cycle technology, working directly with industry and international universities, national labs and regulators, to address the key challenges of advanced fuels and recycle technologies.
- Academically excellent research that uses leading analytical modelling methods to inform and guide world-class experimental programmes.
- The research scope covers a range of time-scales, from near-term technologies applicable to current facilities, to longer-term sustainable technologies for advanced Gen-IV systems.
- Will train a cohort of young PhD and post-doctoral researchers in nuclear fuel technology, in order to address the existing and widening skills gap in nuclear fuel cycle technology
- Multi-disciplined collaborative approach, in two key areas Fuels and Separation technologies
- Potential projects put forward and selected by Peer Review by National Decommissioning Authority, National Nuclear Laboratory, Westinghouse, Rolls-Royce and EDF and guided by the Nuclear Fission Technology Roadmap

PACIFIC Fuel Projects

	Project	Lead	Partners		
In-Reactor Damage Effects in Advanced Ceramic Fuels and Coatings					
1	Fuel Modelling	Robin Grimes	Imperial College, Cambridge Manchester, Westinghouse		
2	Thin Film Sample Manufacture	Tom Scott	Bristol, Manchester, NNL		
3	Advanced TRISO Coated Particle Fuel	Ping Xiao	Manchester, NNL		
4	ATF Fuel Manufacture, Characterisation and Irradiation	Tim Abram	Manchester, Bristol, NNL		
In-Reactor Damage Effects in Cladding Materials					
1	Mechanistic Study of Pellet-Cladding Interaction	Michael Preuss	Manchester, Imperial College, Westinghouse		

NFCE facilities for manufacturing and testing Accident-Tolerant Fuels and Cladding

Irradiation testing at DCF

CVD coater for TRISO fuel particle manufacture

EPSRC Engineering and Physical Sciences PACIFIC Separations and Recycle Projects Research Council

Research Area	Title of Project	Lead	University
Minor actinide separation	Direct monitoring of speciation in fuel cycle separations	S Faulkner	Oxford
	Optimising Interfacial Transfer Kinetics During Nuclear Separations	C Boxall	Lancaster
	Actinide behaviour and radiolysis effects of complexants in advanced separations	C Sharrad	Manchester
	Actinide Separation and Selective Extraction Technology (ASSET)	L Harwood	Reading
Advanced separations technology	Developing a better understanding of conventional solvent extraction technology	B Hanson	Leeds
	Intensified separation using impinging jets	P Angeli	UCL
	Development of high efficiency coalescers and settlers	B Hanson	Leeds
	Continuous Chromatographic Separation of Actinides and Fission Products	H Eccles	Uclan
Product conversion to fuel	The Conversion of Mixed Fuel Oxides to Fuels and Fuel precursors using Molten Salt systems	A Mount	Edinburgh
	Electro-reduction of spent nuclear fuel oxides for separation and conversion to fuel precursors	D Brett	UCL
	Decontamination and immobilisation of pyroprocessing wastes	N Hyatt	Sheffield

Electronically modulated BTPhens

A. Afsar, L. M. Harwood, M. J. Hudson, A. Geist and J. Westwood, *Chem. Commun.*, **2015**, 51, 5860 – 5863.

- Liquid sheet is formed when the two liquid jets impinge at sufficient momentum.
- The liquid sheet disintegrates to form droplets from waves at the point of impingement

Dimitrios Tsaoulidis and Panagiota Angeli Department of Chemical Engineering, University College London

Q_{jet}=75 cm³ min⁻¹

School of Chemical and Process Engineering FACULTY OF ENGINEERING

Time Averaged – LES vs k-e

Z Khatir, B Hanson, M Fairweather, P Heggs