

Carbides for Future Fission Environments

2016 Upate

Ian Farnan

Department of Earth Sciences & Cambridge Nuclear Energy Centre

Nuclear Academics Meeting, University of Bristol ,14-15 September 2016

CAFFE Research Project

Carbides for Future Fission Environments

Accident Tolerant Fuels

Zircaloy-4, 80 min

M5[®], 80 min ZIRLO[™], 80 min

Hi T steam tests on zircalloys [Y. Lee (KAIST)]

Clads

Zircalloy is an excellent material in normal operating conditions for LWRs.

In a LOCA situation, rapid & strongly exothermic reaction with steam.

Reduction in strength with temperature & irradiation growth is a limit on burn-up.

Main safety factor in design basis accidents

Carbides for Future Fission Environments New materials for cladding

Nuclear Academics Meeting, University of Bristol, 14-15 September 2016

CAFFE Research Project

Aim

- Zr carbide based materials for high dpa operation
- MAX phase-like layered carbides potentially machinable
- Good neutronics and resistant to radiation damage & corrosion

Methods

Theory:	DFT calculations, SQS for substitutions, Phase diagrams				
Preparation:	Imperial, KU Leuven (via SCK-CEN)				
Characterisation:	optimised preparation, radiation damage and steam corrosion effects				
	TEM, XRD, ¹³ C NMR, physical property measurements.				
Irradiation	proton irradiation DCF, heavy ion GANIL, n ₀ ANDROMEDA				

Nuclear Academics Meeting, University of Bristol, 14-15 September 2016

CAFFE Research Project

Universities:	Cambridge, Imperial, Manchester					
Industrial:	Westinghouse, NNL, Rolls-Royce					
Facilities:	NNUF Dalton Cumbria					
Personnel:	Ian Farnan, Paul Bristowe, Kevin Knowles (UCAM) Shafqat Shah (PDRA), Hassan Qarra (PhD), Dhan-sham Rana (PhD)					
	Bill Lee, Mike Finnis, Ni Na (ICL) Eugenio Zapatas-Salvas (PDRA), 2 x PhD					
	Philip Frankel, Michael Preuss, Simon Pimblott, Enrique (UMAN) PDRA, Joe Ward (PhD)					
	Masters students from Cambridge MPhil & ICL MSc (neutronics)					
Collaboration:	SCK-CEN/KU Leuven (Konstantza Lambrinou/J. Veugel) CARAT (USDoE/Westinghouse), ANDROMEDA (H2020)					

Early results: MAX phase DFT

Early results: MAX phase DFT

Enthalpy of formation

Nuclear Academics Meeting, University of Bristol, 14-15 September 2016

Early results: ZrAIC(312,211)

- 312 and 211 produced in 40-60% yield (KU Leuven)
- addition of Si increase yield of 312 phase (EZ-S, Imperial)
- focus on quaternary Max Phases (M site)

Targeted compound	Phases	Structure	a(Å)	b(Å)	c(Å)	V(ų)	Volume ratio (%)
Zr _{2.5} Ti _{0.5} AlC ₂	MAX	P63/mmc	3.2900(4)	3.2900(4)	19.696(4)	184.63(8)	-
1450 ºC	Zr(Ti)C	FM-3M	4.6597(6)	4.6597(6)	4.6597(6)	101.17(3)	-
Zr _{2.5} Ti _{0.5} AlC ₂	MAX	P63/mmc	3.1206(4)	3.1206(4)	18.784(3)	158.41(6)	90±2
1500 ºC	Ti(Zr)C	FM-3M	4.3630(8)	4.3630(8)	4.3630(8)	102.94(5)	10±1
Zr _{2.5} Ti _{0.5} AlC ₂	MAX	P63/mmc	3.2887(4)	3.2887(4)	19.709(3)	184.60(7)	-
1550 ºC	Zr(Ti)C	FM-3M	4.6594(6)	4.6594(6)	4.6594(6)	101.15(3)	-
Zr ₂ TiAlC ₂	MAX	P63/mmc	3.1386(6)	3.1386(6)	18.869(4)	160.97(9)	61±2
1500 ºC	Zr(Ti)C	FM-3M	4.6384(9)	4.6384(9)	4.6384(9)	99.79(6)	39±2
Zr ₃ AlC ₂ (lit.)	MAX	P63/mmc	3.33308(6)	3.33308(6)	19.9507(3)	191.95()	-
Ti ₃ AlC ₂ (lit.)	MAX	P63/mmc	3.0786()	3.0786()	18.73()	153.736()	-

Future activities

Annual review meeting 22-23 November 2016

Advisory board: M. Barsoum (Drexel), J.Wang (Shenyan), L. Halstadius (Westinghouse ret.)

Accident Tolerant Materials International Meeting Cambridge July 2018

in conjunction with Engineering Conferences International

