### Nuclear Advanced Manufacturing Research Centre













### **UK Nuclear New Build**

 Government has authorised 8 sites for new nuclear power stations.

 If all stations go ahead they will provide 16GWe an investment of £40 billion.

Huge opportunity for UK manufacturing supply chain.





# Nuclear AMRC Work Programmes

# Business Support Programme

 Aimed at getting companies to market, developing their capability and cost-competitiveness and helping them succeed in the long-term

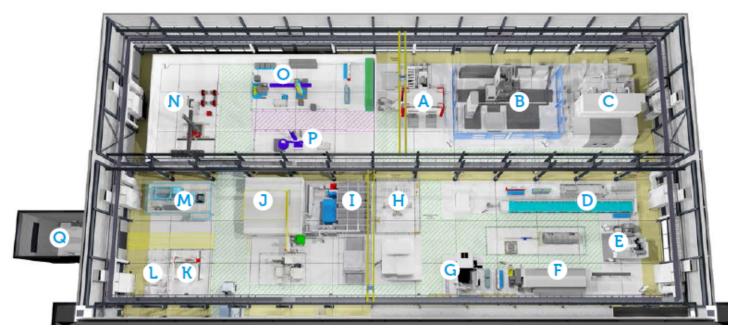
# Manufacturing Process R&D

 Aimed at ensuring that the UK nuclear manufacturing supply chain has the capability to compete on cost, quality and time to delivery in the civil nuclear market

# Training & Skills Development

 Aimed at ensuring that the nuclear manufacturing supply chain has the skills required to compete in the global civil nuclear market (Apprenticeships, CPD, etc. to PhD/Eng.D)

# Quality, Codes & Standards


 Aimed at ensuring manufacturers have clarity and knowledge on quality requirements, nuclear codes and standards, and are supported in meeting and exceeding these



## Manufacturing Process R&D

### **Nuclear AMRC facilities**

Infrastructure that may be beneficial to NPL



#### Machining

| В                | Soraluce FX12000                                                       |
|------------------|------------------------------------------------------------------------|
| С                | Dörries Contumat VTL                                                   |
| D                | TBT ML700                                                              |
| E                | Hermle C60 U-MT                                                        |
| F                | Mori Seiki NT6600                                                      |
| G                | Mazak Orbitec 20                                                       |
| Н                | Robot machining                                                        |
|                  |                                                                        |
|                  | Welding & cladding                                                     |
| I                | Welding & cladding Pro-Beam K2000                                      |
|                  |                                                                        |
| J                | Pro-Beam K2000                                                         |
| j<br>K           | Pro-Beam K2000                                                         |
| J<br>K<br>L      | Pro-Beam K2000  Diode laser cell  Pro-Beam K25                         |
| J<br>K<br>L<br>M | Pro-Beam K2000 Diode laser cell Pro-Beam K25 Additive manufacturing    |
| J<br>K<br>L<br>M | Pro-Beam K2000  Diode laser cell  Pro-Beam K25  Additive manufacturing |

A Starrag HEC1800 PTM .....

#### Metrology & inspection

Q CMM room .....



### Nuclear AMRC Core Technology Themes

**Advanced Machining** 

**Bulk additive Manufacturing** 

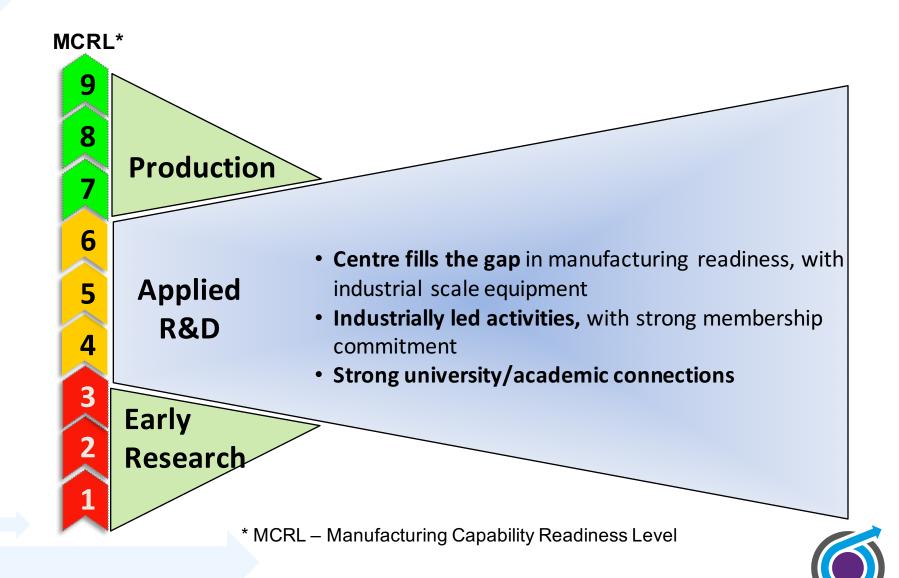
**Electron Beam Manufacturing** 

**Hot Isostatic Pressing** 

**Integrated Manufacturing** 

Large Volume Metrology

Laser Beam Manufacturing


Mechanised Arc Welding

Virtual & Augmented Reality

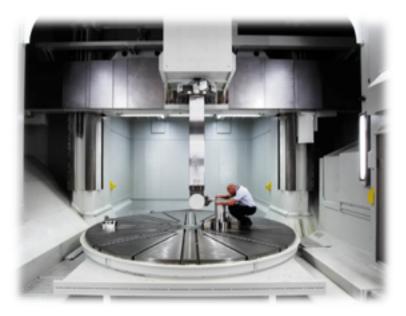




### Manufacturing Capability Readiness Levels



## Unique, Large Scale Capability


Focused on providing the UK's heavy engineering, high value manufacturing sectors with industrial scale machining R&D capability.

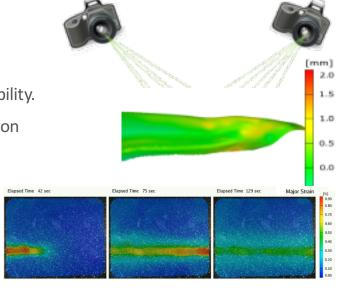
#### Capability to manufacture parts up to:

- 12m x 5m x 5m
- 50 tonnes in weight
- 6,000m2 shop floor

#### R&D facility for:

- Pre-production development
- Machining optimisation
- Cost reduction programmes






# Automated Photogrammetry for Inspection Applications in Harsh Environments

#### Reason:

- Create a step change by using affordable consumer technologies for inspection.
- Provide a distinct competitive advantage for UK manufacturing.
- Establish Nuclear AMRC as a leading centre in the field of Non-contact optical inspection.

- Understanding of volumetric errors.
- Development effective and robust image processing software.
- How to establish the un-certainty of the technology.
- Develop operating procedures and standard to maintain repeatability.
- Automation Development Potential for robotic or CNC integration
- Residual Stress applications
- Harsh environment: Underwater in machine/chamber.
- Robotic Calibration.

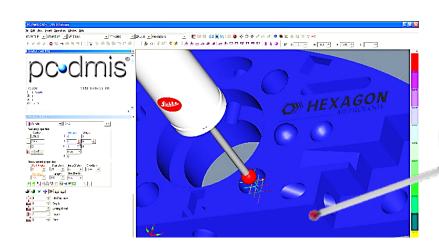




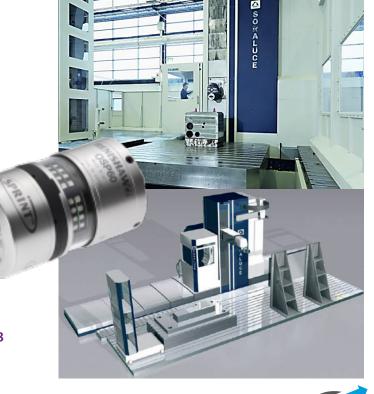
## Inspection of Large High Value Components In Process On a machine Tool Platform

#### Reason:

- Create a step change for in-process inspection.
- Provide a distinct competitive advantage for UK manufacturing.
- Establish Nuclear AMRC as a leading centre in the field of CNC machine calibration and in-process inspection.


- Understanding of machine tool expansion and dynamic characteristics.
- Efficient and robust processes.
- Thermal monitoring, control and compensation in differing modes of operation.
- In process machine health check.
- Artefact comparison technologies.
- How to establish the un-certainty of a machine.




Inspection of Large High Value Components In Process on a Machine Tool Platform

#### Capability:

- Renishaw RMP60 and RMP600 probes
- Renishaw Sprint
- PC-DMIS Software interfaced



Soraluce FX1200 Working Volume Area of 300 m<sup>3</sup>





### Investigation of Structural Variations in Large Scale Machine Tools

#### Reason:

- Determination of machine tool induced compliances in machining of large scale parts.
- Provide a predictive model to estimate the structural variations in large scale machine tools.
- Establish Nuclear AMRC as a leading centre in the large scale part manufacturing.

- Structural analysis and modelling of machine tools.
- Successful application of process models to estimate machining mechanics and dynamics.
- How to develop geometrical models of machine tool components.
- Utilising laser trackers as displacement sensor
- Error compensation

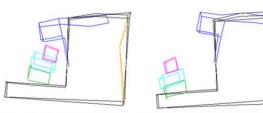
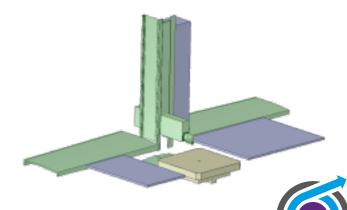
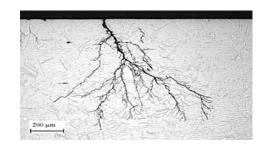
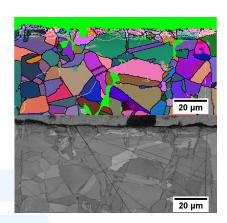
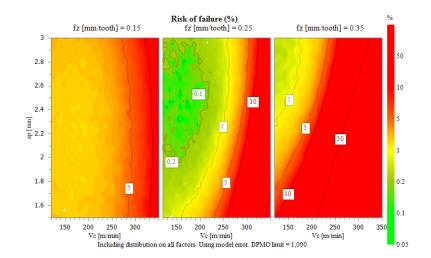





Fig. 3 Critical vibration mode with large relative displacement between tool and workpiece in a key-cutting machine






### Surface integrity




#### Reason:

- Nuclear industry has a unique need for components required to have a long operative life while being subjected to an aggressive environment
- Expensive mission critical components need to meet strict inspection parameters or be scrapped

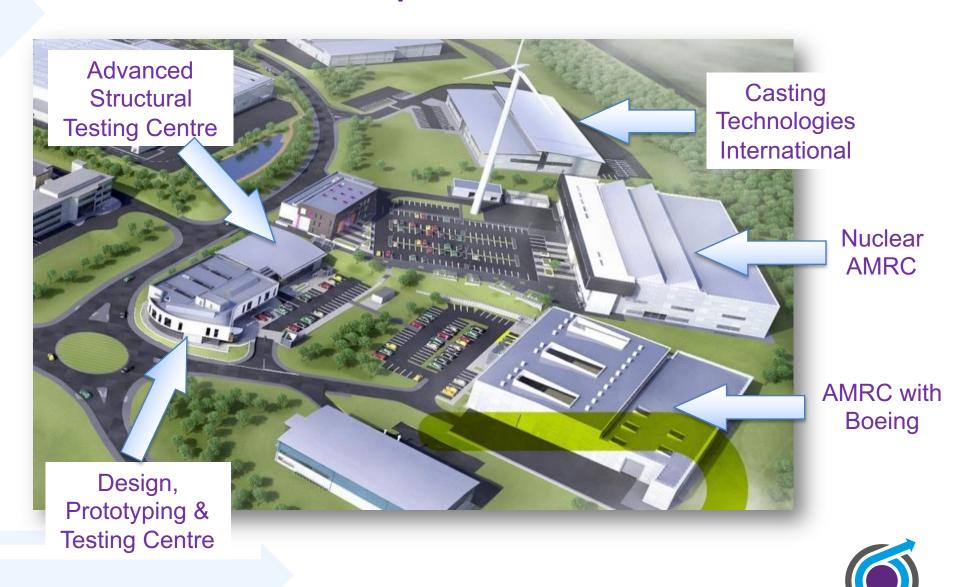
- Understanding the behavior of materials to different machining strategies and parameters
- Effects on surface quality, surface defects and residual stress
- Identification of coolant pressure, tool geometry, machine geometry and their effects on finished component performance
- Development of a machining maps to allow machinists to identify safe parameters resulting in defect-free finished surfaces







Two temperature controlled facilities Total Floor Area of 80 m<sup>2</sup> typically 20°C ±1°C with humidity monitoring


#### **Equipment:**

- Nuclear AMRC has an extensive range of metrology equipment
- Laser Tracker and Laser Radar
- Co-ordinate measuring machines
- Non-contact scanning structured light, photogrammetry and laser





## The AMRC Group



## High Value Manufacturing Catapult





### Summary

Academic/industry hybrid

Nuclear AMRC's remit is to assist the UK's high value, heavy engineering manufactures.

State-of-the-art, large scale manufacturing and metrology.

The Centre has a national focus for development of the UK nuclear manufacturing supply chain.





## Thank You











