CAFFE Research Project

Carbides for Future Fission Environments

Accident Tolerant Fuels

Hi T steam tests on zircalloys [Y. Lee (KAIST)]

Clads

Zircalloy is an excellent material in normal operating conditions for LWRs.

In a LOCA situation, rapid & strongly exothermic reaction with steam.

Reduction in strength with temperature & irradiation growth is a limit on burn-up.

Main safety factor in design basis accidents

Carbides for Future Fission Environments
New materials for cladding

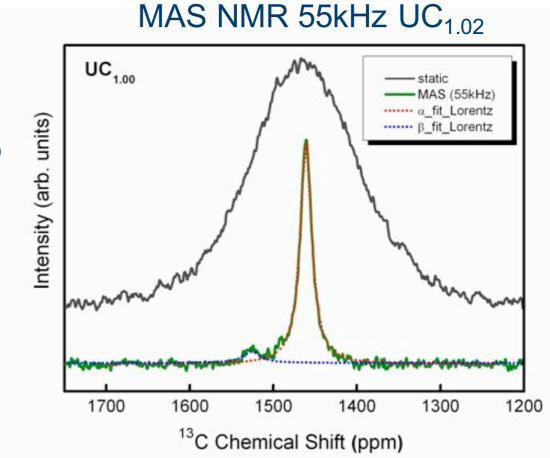
CAFFE Research Project

Aim

- Zr carbide based materials for high dpa operation
- MAX phase-like layered carbides potentially machinable
- Good neutronics and resistant to radiation damage & corrosion

Methods

DFT calculations:


finite T free energies ZrC and other C binaries to provide input to phase diagram calculation defects, grain boundary interactions

Fabricatrion & Characterisation:

optimised preparation, radiation damage and steam corrosion effects

13C MASNMR, TEM, Physical properties

Irradiation, in situ irradiation & XRD [Uman/DCF]

CAFFE Research Project

Universities: Cambridge, Imperial, Manchester

Industrial: Westinghouse, NNL, Rolls-Royce

Facilities: NNUF Dalton Cumbria

Personnel: Ian Farnan, Paul Bristowe, Kevin Knowles

Bill Lee, Mike Finnis, Ni Na, Denis Horlait

Philip Frankel, Michael Preuss, Simon Pimblott

3 x PDRAs, 3 x PhD students, several Masters dissertations

Collaboration: CARAT (USDoE/Westinghouse), IL TROVATORE (H2020),

FALSTAFF(H2020???)

International meeting: Accident Tolerant Materials

Cambridge, summer 2018

