Overview of EPSRC / RWM Geowaste Collaboration

Jon Martin

Head of Research

Radioactive Waste Management Limited

One of our Joint Initiatives - 5 consortia

C14-BIG

The Post-Disposal Behaviour of ¹⁴C and Irradiated Graphite

Nuclear Decommissioning Authority

The Post-Disposal Behaviour of ¹⁴C and Irradiated Graphite

- To arrive at a more realistic understanding of postdisposal ¹⁴C behaviour
- Allow a more realistic treatment of ¹⁴C in performance assessment calculations
- More informed/appropriate disposal of reactor graphite

Improved Understanding of Reactor Graphite

C14 enrichment in deposit on Oldbury graphite, channel wall face C13 simulants successfully prepared by microwave plasma chemical vapour deposition (MPCVD) - Similar morphologies to C14 deposits on irradiated graphite achieved

Figure 2, Scanning electron micrographs from ¹²C (a) and ¹³C (b) carbonaceous deposits on Pile Grade A graphite, system pressure 10mbar.

Radioactive Waste Management Limited

In situ time-dependent characterisation of corrosion processes in nuclear waste storage and GDF environments

Overview of Scope

- Alison Davenport + PhD student (U. Birmingham)
 - atmospheric corrosion of stainless steel
- Dirk Engelberg + PhD student (U. Manchester)
 - Atmospherically induced stress corrosion cracking of stainless steel
 - duplex stainless steels
- Tom Scott + PhD student (U. Bristol)
 - U/cement
- Post-doc (Birmingham) collaborating with Trevor Rayment at Diamond
 - co-ordinates synchrotron activities
 - atmospheric corrosion and modelling
 - research on steel/bentonite

Understanding Pitting Corrosion of Stainless Steel Waste Containers

- Develop synchrotron X-ray methods for in situ timedependent measurement of corrosion processes
- Need to determine safe limits of chloride, humidity and pollutants to limit corrosion damage and maintain integrity of containers
- Mechanism /kinetics of corrosion will inform models for long term corrosion prediction

Radioactive Waste Management Limited

Protective marking

Atomic and Macro-scale Studies of Surface Processes: Towards Mechanistic Understanding of Surface **Reactivity and Radionuclide Binding Mechanisms**

The **AMASS** Consortium

Imperial College London

The University of Manchester

EPSRC Pioneering research and skills

Authority

About AMASS: The Project

About AMASS: The Team

• A multidisciplinary team across 4 institutions

Mary Ryan (Imperial): Surface Science / Electrochemistry
Roy Wogelius (Manchester): Mineral Reaction Kinetics / Spectroscopy
Kath Morris (Manchester): Radiochemistry/Spectroscopy
Gareth Law (Manchester): Radiochemistry
Nick Evans (Loughborough): Radiochemistry
Neil Burton (Manchester): Computational Chemistry
Fred Mosselmans (Diamond):X-ray Spectroscopy

Behaviour of UK Specific Spent Fuel Under Conditions Relevant to Geological Disposal

Coordinator: Ian Farnan

CNEC: Department of Earth Sciences

Suitability of UK Spent Nuclear Fuel for Disposal

NATIONAL NU

Decommission Authority

Summary

Produced batch of DU SIMFuels - chemically representative of AGR SNF topological/spatial representation needs improving

Producing atomistic models that predict solution/ex-solution FPs in UO₂

Producing interatomic potentials that describe UO_2 and MAs at fuel operating temperatures.

Creation of chemical/rad damage SIMFuel scheduled for October.

Observing the effects of peroxide attack on SIMFuel surface

Electrochemical corrosion of clad underway

U minerals grown in Lab - incorporation of transuranics 'demonstrated'

Primary differences between AGR and LWR fuels

Organisation of research

WP2 - Imperial -AGR SimFuel preparation
Zoltan Heizl (Bill Lee/David Hambley)WP3 - Imperial -Modelling of fission product distribution in AGR fuel
Mike Cooper (Robin Grimes/Ian Farnan)WP4 - Cambridge -Heavy ion bombardment of AGR SIMFUEL
Aleksej Popel (Ian Farnan/Bill Lee)WP5 - Lancaster -Corrosion of AGR fuel - secondary mineral phase evolution
Nadya Rauff-Nishtar (Colin Boxall/Ian Farnan)WP6 - Lancaster -Corrosion of UO2 in presence of steel corrosion products
Chris Anwyl (Colin Boxall/David Hambley)WP7 - Cambridge -Stability and properties of secondary mineral phases
Fred Lord (Ian Farnan/Colin Boxall)

SAFE Barriers: A systems approach for engineered barriers

Radioactive Waste Management Limited

Consortium Approach

- Multi-disciplinary research into the thermo-hydro-mechanicalchemical evolution of the EBS under the full range of environmental conditions
- Taking a *whole systems* approach to analysis of EBS
 - predictive understanding of the THMC evolution
 - effects of interfaces
 - up to the upper-bound of environmental conditions

Figure 1 Consortium Structure: Advanced experimental monitoring techniques underpin a *whole-systems* engineering analysis of EBS evolution in extreme environments.

The Consortium

• Strathclyde University – Prof R Lunn – Pl

- Newcastle University C Davie
- Oxford University N Hankins
- Cardiff University H Thomas
- British Geological Survey J Harrington
- Edinburgh University S Harley
- Nottingham University A Cliffe
- Glasgow University P Grassl
- Started Sept 2012

Summary

- Addressing balance between 'needs driven' and 'curiosity driven' research.
- Valuable collaboration with RCUK
- Together with NERC RATE programme and ad hoc studies contributes to pool of 50 PhDs and 25 PDRAs currently funded by RWM.