Graphite Research

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2011 & 2013

• Why?

MANCHESTER

- Core of AGRs; irradiation damage during operation leads to weight loss, change in dimensions & properties, stress and cracking
- Life-limiting component of reactors
 - See recent (BBC, Times) and upcoming news items
- Current research activity
 - Funded by industry (EDF), regulator (ONR), EPSRC, TSB, EU
 - Plant life extension (PLEX) and future systems
 - Fundamentals of irradiation damage
 - Irradiation creep (mitigating stress development)
 - Strength and fracture
 - Waste treatment

The University of Manchester

Irradiation damage

- FunGraph (EPSRC)
 - Fundamentals of Current and Future Uses of Nuclear Graphite
 - Consortium of Huddersfield, Leeds, Manchester, Nottingham, Salford, Surrey universities
- Mechanistic understanding of irradiation effects
 - Ab initio; kinetic Monte Carlo; dislocation models of defects
 - Electron microscopy
 - Model (thick graphene) and irradiated material
 - Evolution of damage in situ
 - Neutron and synchrotron x-ray studies
 - Structural changes; crack and void closure; effects of loading Range of model and irradiated materials

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2011 & 2013

The University of Manchester

Neutron irradiated samples

- Manchester's samples
 - Oldbury (PGA 5dpa)
 - BEPO channel 16 (PGA)
- 80 kV

FunGraph meeting 29th – 31st October 2012 Huddersfield

Microstructure: Irradiated graphite

Irradiated AGR Near surface 120E20 EDND Irradiated AGR Near surface 120E20 EDND

Imaged at Central Labs, NNL

THE QUEEN'S

Irradiation Creep

THE QUEEN'S ANNIVERSARY PRIZES FOR Higher and Further Education 2011 & 2013

- TSB-funded, EDF-lead
 - Influence of Irradiation Creep on Plant Life Optimisation
 - Manchester and Surrey universities
 - NRG, Fraser-Nash, AMEC
- Mechanistic understanding of irradiation creep
 - Defect structures and mobility under load
 - Configuration; energies of formation
 - Microstructural changes
 - Role of interfaces/boundaries
 - Stress relaxation

The University of Manchester MANCHESTER

Unbound and bound configurations of the $V^{2,2}_{bb}$ interlayer di-vacancy.

Microstructure-based FE models for irradiation creep

- QUBE (EPSRC)
 - Oxford, Bristol and Manchester universities

Microstructure-Sensitive Component-Scale Fracture Modelling

THE OUEEN'S

ANNIVERSARY PRIZES Cellular FE model: 2011 St 2013 2011 & 2013 Meshfree linking of microstructure-dependent heterogeneous model and coarse FE component model

The CA model may be used as microstructure dependent input, providing properties of coarser "cells" in the Cellular FE model

8

MANCHESTER

- HSE(NII) established the AGR Brick Cracking Network (AGR BCN) in 2008 to:
 - develop an improved understanding of cracking observed in AGR graphite bricks and develop a predictive capability
 - secure, maintain and develop sources of independent advice
 - ensure NII is well informed on key technical issues and therefore able to make sound regulatory decisions
- AGR BCN is a tripartite programme
 - The University of Birmingham, The University of Manchester, Health & Safety Laboratory
- Two aspects under investigation
 - crack driving force parameters (HSL & UoM)
 - materials resistance parameters (UoB & HSL)

MANCHESTER

Introduction

- Emulator approach
 - applied successfully for dimensional change behaviour
 - inspection data
 - constitutive equations
 - calibrated dimensional changes
 - inert similar to baseline
 - reduced effect of oxidation

Modelling approach

- Two TSB projects; both EDF-lead
 - Fracture of Graphite Fuel Bricks
 - University of Manchester, EDF NG, EDF R&D
- Modelling crack propagation in fuel bricks
 - XFEM, energy release rates
 - Comparison with experiment
- Statistical models of core normal and seismic behaviour
- Mimic irradiation damage by bromination
 - No external driving forces for crack growth (cf in service)
 - Criteria for crack initiation as function of local microstructure

MANCHESTEI

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2011 & 2013

Tomographic image of brominated grapite

Plate 5 Prismatic torsion specimen after failure (After Brokenshire 1995)

Comparison of crack paths with prediction

The University of Manchester

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2011 & 2013

- Influence of Creep and Geometry on Strength of Irradiated Graphite Components
 - University of Manchester, EDF NG
- Valid fracture data on irradiated material
 - Large trepanned specimens at reactor end-of-life
 - Ex-Oldbury
 - effects of notch geometries on properties
- Crack initiation and propagation
- Comparison with AGR installed sets
- Thermal creep as basis for irradiation creep
- Effects of creep on mechanical/fracture behaviour

The University of Manchester MANCHESTER