UKAEA

UK Atomic

Energy Authority

Materials Research Facility

Dr Valentine Kanyanta

Nuclear Academics Meeting – 6th-7th September 2023

MATERIA

Fusion Grant 2022/27 EP/W006839/1

MRF is part of the National Nuclear Users Facility (NNUF) and the Sir Henry Royce Institute for Advanced Materials

Introduction to UKAEA

UKAEA mission is to lead the delivery of sustainable fusion energy and maximise the scientific and economic benefit.

- Be a world leader in fusion research and development
- Enable the delivery of sustainable fusion power plants
- Drive economic growth and high-tech jobs in the UK
- Create places that accelerate innovation and develop skilled people for industry to thrive.

Enabling Delivery of Fusion Energy

...from science experiments to power plants...

Credits: Top images from <u>https://fusionforenergy</u> Bottom image from UKAEA (STEP)

STEP (2040s)

Fusion energy is in accelerated delivery mode:

XX

UK Atomic Energy Authority

- Transitioning from science experiments to delivering fusion power plants
- Increased interest from private sector (over \$6B in investments raised)
- 30+ private fusion startups
- Increased mobilisation of fusion industry & supply chain

OFFICIAL

Solving Materials Challenges Critical to the Success of Fusion!

Research challenges - Culham Centre for Fusion Energy (ukaea.uk)

Examples of Fusion Materials Challenges

1400 350 300 RAFM steels (0.1 - 78 dpa F82H-IEA & Mod. DBTT (Charpy V-Notch) -ODS-EU.97 V Eurofer97 Eurofee97 1200 -250 · 200 · F82H-mod Eu.97 Eurofusion variants Optifer A ORNI-9Cr-2WV Tritium-GA3X ORNL-9Cr-2WVTa Yield Stress (MPa) 9 0001 British Steel-9Cr-2WVT Nanir - ODS-Eurofer97 () 100 100 oq (M3CVN) **Materials** JLF-3 JLM-0 F82H-IEA F82H-mod3 MANET-I Interaction F82H+1.4%⁵⁶Ni X F82H+1.4%⁶⁰Ni F 9Cr-1MoVNb S 9Cr-1Mo Tog (PCCVN) 50 Ъ ♦ F82H-IEA O RAFM steels F82H+1.4% nat.Ni Conventional QCr FM ster DBTT To (0.18T DCT) * F82H-IEA 400 High Non-Irradiated RAFM -50 Neutron 200 RAFM magnetic nonirradiated irradiation -100 fields values 0 200 600 0 100 300 400 500 700 800 250 300 350 400 450 500 550 Irradiation and test temperature (°C) Irradiation temperature (°C) Fusion Figures showing effect of irradiation damage on yield strength and ductile brittle transition temperature. Irradiation also results in loss of ductility / fracture toughness (Ref: Bhattacharya et al. J. Phys. Energy (2022)) Materials Challenges 1.0E-04 1000 Vanadium-Allov 1.0E-05 ODS Steel Coolant-High .0E-06 Stress [MPa] Materials temp. rate RAFM stee creep Interaction creep 1.0E-07 **0**6 100 m Rupture 1.0E-08 Щ и 1.0E-09 nproved cree lifetimes Hoelzer et al. 2010 Cryogenic 1% per year Javakumar et al. 201. Rieth et al. 2003 1.0E-10 temp. Nagasaka et al. 2019 Katoh et al. 2014 10 _____ 1.0E-11 20,000 25,000 30,000 35,000 400 100 200 300 LMP [Tx(25+log(t)] Stress (MPa) 500C 600C 700C 800C 900C 10,000 hrs Figures showing rapture stress vs. Larson-Miller 20,000 hrs parameter and minimum creep rate for different 30,000 hrs structural materials. [Credit: Dr Jack Haley, UKAEA)

Compiled by Haley 2023

40,000 hrs

OFFICIAL

Role of the Materials Research Facility (MRF)

See the damage

Interrogating materials to nanometer and atomic resolution

Bright-field STEM image showing native dislocations in bainitic RPV steel (credit: Dr Jack Haley, UKAEA).

Understand the damage

Understanding nature of damage through modelling and experiments; and impact on material properties

"dpa-spectra" for different reaction channels in pure 56Fe irradiated in a typical neutron spectrum for the first wall of a demonstration fusion power plant (Ref: DOI: 10.1016/j.jnucmat.2018.03.032)

Do something about it

UK Atomic Energy Authority

Design better materials; provide engineering assurance

 Yttria diameter (type)
 Average
 Range
 Min
 Max

 Feret (nm)
 27.89
 85.68
 9.01
 94.69

 Equivalent circle (nm)
 18.62
 69.5
 6.22
 75.72

ODS steel (Fe-14Cr-2W-0.3Ti-0.3Y2O3) engineered for better high temperature properties and improved resistance to radiation damage

Where MRF sits in Relation to UK National Capabilities

UKAEA – MRF, UK NNL,UK Universities, UK 3.75 TBq ~ 150 MBq Medium activity, Most active, fuel (Co^{60}) structural cycle Non-Active RR State 2 Hot Cell RR State 1 (manual (robotic handling) handling)

MRF partners:

HENRY ... ROYCE ... INSTITUT

×

MRF Current & Future Capabilities

Sample Preparation & Microstructure Analysis

OFFICIAL

Other instruments:

Sample preparation:

- Hot-cell (high-active) & glovebox (low-active) sample prep
- Precision Ion-beam Polishing
- Sputter Coater
- 2023: Hot-cell EDM/micro-milling/laser cutting <u>Microstructure analysis:</u>
- SEM (+ EDS, EBSD, TKD, WDS)
- CSLM with Raman Spectroscopy
- Atom Force Microscope
- X-ray Diffractometer
- 2023: DSC-MS
- 2023: XRD s-stage (HT)

Ga FIB equipped with EBSD Detector and Cryo Vacuum Transfer System

200 kV NEOARM TEM with Gas Cell System (Protochips)

MRF Current & Future Capabilities

Mechanical & Thermo-Physical Properties Testing

- Tensile properties (Nano- & instrumented indentation, 5kN &10kN static load frames, SEM In-situ testing with hot stage)
- Fatigue (15kN dynamic load frame, 20kHz ultrasonic fatigue rig)
- Creep
- Fracture (small punch test, mini-CT, SENB)
- Physical Property Measurement System (14T/1.8K-1000K)
- Laserflash Analysis (LT/HT)
- Dilatometry (LT/HT)
- DIC (non-contact) strain measurements

10kN static load frame

In-situ Mechanical Testing System

Two new hot cells equipped with a fabrication and mechanical test equipment

Physical properties measurement system (PPMS)

Future proof design with removable containment box

MRF Current & Future Capabilities

Materials interaction with environment (i.e., tritium, plasma and coolants)

Hydrogen isotope implantation

Thermal Desorption Spectroscopy

MRF installing capability for Lithium corrosion testing of materials at 200-750°C under controlled atmosphere inside a glovebox

- Deuterium ion implantation capabilities are available at UKAEA.
- Plans to upgrade capability to tritium (initially will be limited to tritium inventories of 40GBq, increasing significantly once the new H3AT facility is available).
- Also development of Lithium corrosion rig underway (operational from Q2 2023)

UK Atomic Energy Authority

See the damage – high resolution microscopy

Examination of native dislocations and precipitates in bainitic RPV steel (Dr Jack Haley, UKAEA)

Above: Bright-field STEM image showing grain structure of bainitic RPV steel.

Above: Bright-field STEM image showing native dislocations in bainitic RPV steel.

Examination of helium bubbles in Be₁₂Ti in implanted with He⁺ at 900°C (Dr Slava Kuksenko, UKAEA)

Above: Bright-field (left) and HAADF (right) STEM images showing helium bubbles in He⁺ implanted Be₁₂Ti

UK Atomic Energy Authority

Preparing micromechanical test samples using Plasma FIB

Volume preparation

OFFICIAL

Final shaping

Rough shaping

50 µm

UK Atomic Energy Authori<u>ty</u>

Understand the damage – modelling and experimental characterisation of materialsenvironment interactions (i.e., neutrons, plasma and coolants)

Modelling of materials interaction with neutrons

Credit: Dr Mark Gilbert and Dr Joven Lim, UKAEA

OFFICIAL

Materials interaction with coolants – characterisation of corrosion behaviour

G91 F/M steel exposed to gamma irradiation under controlled water environment at 150 °C. Water clarity is reduced with increase of exposure to gamma radiation due to increasing amount of oxides contaminated the water.

Strain-time curves of 9Cr-ODS Ferritic/Martensitic steels before and after exposure to static Li and PbLi [Courtesy of NIFS, Japan]

UK Atomic Energy Authority

Understand the damage – materials interaction with plasma

600

500

Modelling of temperature profile on plasma facing wall during a pulse

Credit: Dr Yevhen Zayachuk, Dr Anna Widdowson, Dr Ionut Jepu, Dr Robert Kerr, Dr Alvaro Pechero and Dr Paul Coad, UKAEA.

4 OFFICIAL

We also Invest in Modelling

Understand the damage – we also employ multiscale modelling approach, working with other groups at UKAEA and academic partners

Length Scale

And Developing New Materials

Do something about the damage – developing better materials

Joining techniques and post-weld heat treatments for novel/new materials such as ODS

Credit: Dr David Bowden, Dr James Wade-Zhu, Dr Slava Kuksenko, Dr Jack Haley, Dr Alex Leide and Dr Max Rigby-Bell, UKAEA.

Development of non-metallic composites (SiC/SiCf) as high temperature structure materials for fusion.

Key Contacts

UK Atomic Energy Authority

7 OFFICIAL

UK Atomic Energy Authority

Thank You

Funding Support Acknowledgment:

Engineering and Physical Sciences Research Council HENRY ROYCE INSTITUT