NNUF neutron irradiation facility

Nuclear Science Facilities at the University of Birmingham

Accelerator Driven Neutron Facility at Birmingham and Neutron Attenuation

6.04

Measurements

Phase 1 (years 1 and 2) Complete

- Building alteration and hardware procurement
- Accelerator delivery and installation

Phase 2 (year 3) Sept 2022

- Work-up to 30 mA protons [Q1-Q2 2022]
- Fast neutron fluence rate of 1.8x10¹¹n/cm²/s
- Thermal fluence rate of 6x10⁹ n/cm²/s
- Develop modified target system for closer location of samples
- Develop associated fast neutron reflector configuration Phase 2 (year 4)
- Fast neutron fluence of 1x10¹² n/cm²/s
- Achieving a 10¹⁸ integrated neutron fluence required operation for 11.5 days <u>Phase 3 (years 4+)</u>
- Develop deuteron beam with enhancement of fluence to $>3x10^{12}$ n/cm²/s
- Achieving a 10¹⁸ integrated neutron fluence required operation for 4 days

Graphite stack for thermal neutron irradiations

Graphite stack for thermal neutron irradiations

Thermal flux of $\sim 1.5 \times 10^9$ n/cm²/sec with almost no fast contamination

At 50ppm boron, ~0.25 Gy/min dose rate

Uniform to approx. $\pm 5\%$ over the cell plate

Programme

Completed

- Neutron Radiation Induced Attenuation in Optical Fibers for Fusion Magnet Protection –Bart Ludbrook, VUW New Zealand/ Gerard Fernando/ Madhav Ramesh Birmingham
- Assessing the Neutronic Shielding Performance of Materials for Nuclear Fusion Max Rigby-Bell, UKAEA
- The impact of radiation damage on deuterium retention of CVD diamond James Pittar, Bristol
- Direct activation measurements of the Co-60m metastable state Patrick Galvin, Jack Bishop, Birmingham

Ongoing

• Radiobiological effects of BPA and novel boron containing drugs to optimise the response of head and neck cancer to BNCT. - Leah Punshon, Jason Parsons Birmingham

Upcoming

- Proof of principle test of new beam shaping assembly for BNCT-Igancio Porras, UGR Spain
- Tests of new detector array for gamma ray detection in fusion environments Igancio Porras, UGR Spain
- Tests of detectors for boron capture gamma imaging in neutron fields Zamir Ghani, UKAEA

Potential

- High dose(~100 days of beam time) irradiation of superconducting magnet material for fusion applications
- Tests of liquid lithium loop previously installed at SARAF

Photobleaching of Neutron Radiation Induced Attenuation of Optical Fibers at Cryogenic Temperatures

F Solis Fernandez¹, B Ludbrook¹, B. Phoenix², M. Ramesh², J. Schuyt¹, D. Moseley¹, G. Fernando², and R. Badcock¹

¹Paihau - Robinson Research Institute, Aotearoa - New Zealand ²University of Birmingham, United Kingdom

Resilience of optical senors under cryogenic neutron irradiation

Bartholomew M. Ludbrook, Fernando S. Fernandez, Madhav Ramesh, Ben Phoenix, Dominic A. Moseley, Joe J. Schuyt, Gerard Fernando, Rod A. Badcock

Sample size	Dispal. Rate	Impl. rate	T (°C)
10x12 mm ²	0.02 dpa/h	100 appm/h	200-1000

PAUL SCHERRER INSTITUT

Super-critical water corrosion loop and autoclave for SCC tests: Temp. max.: 650 dC Pressure: 30 MPa Oxygen level controllable

Slow Strain Rate Test Tensile Mini-CT

NNUF neutron irradiation facility

