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Nuclear Science User Facilities

Partner Institution Facilities Partner Institution Facilities

Argonne National Intermediate Voltage Electron Microscopy (IVEM) / The Pennsylvania Radiation Science and Engineering Center / ‘/

Laboratory Tandem Facility State University

Brookhaven National National Synchrotron Light Source I Purdue University Interaction of Materials with Particles and Components ‘/ /

Laboratory

Center for Advanced Microscopy and Characterization Suite (MaCS) J Sandia Na.tional A""U_kif Core Research R@_CTOT._S_NL lon Begm Laboratory, J ‘/ \/

Energy Studies Laboratories Sandia Pulse Reactor Facility Critical Experiment, Gamma
Irradiation Facility

Lawrence Livermore Center for Accelerator Mass Spectrometry o

National Laboratory Texas A&M University Accelerator Laboratory /

Los f\lamos Lost Algmos Neutron _Scatterlng Center - Lujan Center Beamlines, University of Nuclear Materials Laboratory

National Laboratory Plutonium Surface Science Laboratory California, Berkely

Massachusetts Institute ~ Massachusetts Inst?tute of Technology Nuclear Reactor, J \/ University of Florida Nuclear Fuels and Materials Characterization ‘/

of Technology Massachusetts Institute of Technology Reactor

North Ca.rulin-a PULSTAR Reactor J University of Michigan Irradiated Materials Testing Laboratory, Michigan lon Beam ‘/ /

State University Lahoratory, Michigan Center for Materials Characterization

Oak Ridge High-Flux Isotope Reactor, Irradiated Fuels Examination The University of Nuclear Engineering Teaching Laboratory

National Laboratory Laboratory, Irradiated Materials Examination and Testing Facility, / \/ / Texas

Low Activation Materials Design and Analysis Laboratory at Austin

The Ohio State University  The Ohio State University Research Reactor J \/ University of Wisconsin -~ Characterization Laboratory for Irradiated Materials, ‘/ /
University of Wisconsin lon Beam

Pacific Northwest Materials Science and Technology Laboratory, Westinghouse

National Laboratory

Radiochemical Processing Laboratory

v

Churchill Laboratory Services ‘/
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Accessing equipment through NSUF

»Rapid Turnaround Experiments (RTEs):
= Quick analysis of irradiated samples (9 months), ~S50K
= 3 calls per year, 2-pg. narrative

»Super RTE
= Broader scope (12 months), ~S100K
= 1 call per year, 3-pg. narrative

v Pls have to be affiliated with a US institution or a foreign entity based in the
US.

v Pls from foreign institutions can lead if they have a collaborator from the US.

» Consolidated Innovative Nuclear Research (CINR)
= 3—7-year projects, ~S5M
= 1 call per year, 5-pg. pre-proposal, 15-page full proposal narrative
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UF NSUF capabilities a_‘jl'ISUr

FEI HELIOS NANOLAB 600 Dual Beam FIB/SEM FEI TECNAI F20 TEM

* Accepts specimens with dose rates up to 300 mR/hr at contact.
* Approved for a, B, and y samples.
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UF micro mechanical testing capabilities J

= Bruker PI88 Picolndenter

o Low-load and high-load transducers

o Berkovich/cube corner, flat punch tips
for RT and HT

o HT tests up to 800C

o Irradiated samples can be
characterized
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UF micro mechanical testing capabilities
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Micro compression Micro tensile Micro cantilever

= Easy to fabricate = Hard to fabricate = Fabrication relatively easy

= Pillar tapering at bottom = Ease of data analysis = Complex data analysis

= Stress transferred to base = (Can be tested to fracture = May/may not lead to fracture
=  Fracture highly unlikely = Special tips is needed = No special tip required

= No special tip required
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UF micro mechanical testing capabilities J
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UF capabilities (cont.)

GENERAL FEATURES

REACION tYPE ..o Heterogeneous, thermal
Licensed rated power level .........ccccoeveiiiiiinenenne 100 kW thermal
Maximum thermal flux level in center vertical port

At 100 KW 1.5 x 10* n/cm?sec
Excess reactivity (at 72 °F) ....cccooeviviiiniicie e ~600 pcm
Effective prompt neutron lifetime .........c.cccceeveeenen, 2.0x 10% sec
Temperature COeffiCient ..., -1.8 pcm/°C
SEArt-UP SOUICE ...t SbBe < 25 curies or

PuBe ~ 1.0 curies

REFIECION ... Graphite (1.6 g/cm?d)

Y oo (=T =1 (o ] GRS H20 and graphite

«
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Example of the research conducted through NSUF

Structural Materials

Atomic Kinetic Discrete Dislocation Hardening / DBTT

Monte Carlo 5 3 Dynamics Simulations Shift Models
Precipitate

formation

Microstructure
Characterization Micromechanical
i Tensile Testing
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Nuclear Fuels
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Bridging length scales for mechanical tests

ISO/EN A80
Diamond
Gripper

ISO/EN AS0 »
BCuTensile
Rmples

ASTM2S |12
Minil |2 Diamond
Gripper

R

T. Ajantiwalay et al. JOM 71, 1 (2020) 113-122
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Microstructural characterization of oxide fuels DiSUr i

3.4% FIMA Dislocation Loop and Line Density vs. Radial Position
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McKinney, et.al., J. Nucl. Mater. 532, 152053 (2020).
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— : Nuclear Energy

Understanding Constituent Redistribution, Thermal T =U

Transport, and Fission Gas Behavior in U-Zr Annular S
Fuel Without a Sodium Bond C ONSUF s
Solid fuel Annular fuel v

U-Zr fuel
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Xu, et.al., Scientific Reports 13, 10616 (2023).
Sevart, et.al., under review, J. Nucl. Mater (2024).
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