

Launching the UK Fusion Materials Roadmap

25

35

65

80

1693

1

1

Dr Amanda Quadling, Director of Materials Nuclear Academics Meeting, Cambridge, 7-8 Aug 2021 UK Atomic Energy Authority

A Roadmap for Fusion Materials

- ✓ UK has committed to a LOW CARBON Energy future and to Fusion – Spherical Tokamak for Energy Production (STEP; prototype powerplant scoped for 2040)
- The fusion reactor environment is possibly the most extreme environment any material will face. We face a sizeable task to address the triple whammy in fusion materials: TRITIUM, TRANSMUTATION AND DISPLACEMENT
- ✓ A PROGRAMMATIC APPROACH is favoured to ensure timely delivery. Researchers and funders need to reference a common path / plan..

UK Atomic Energy Authority

Official

A seven month group effort...

- ✓ Henry Royce Institute sponsored 4 workshops, facilitated by IfM.
- ✓ UKAEA ran two further consultations and a survey.
- \checkmark A national editorial team worked to finish final document.

INIVERSITYO

XX. **UK** Atomic Energy Authority

If M Engage

× **Roadmap team within Materials Division UK** Atomic Energy Authority at UKAEA **Director of Materials** Dr Amanda Quadling Head of Programme – Head of Programme – Head of MRF **Neutron Materials Interactions Materials Science and Engineer** Metallurgy **Materials Testing** Modelling, Nuclear Data and Materials development and routes to qualification Experiment Due end 2021 Dr Mark Gilbert **Dr Jim Pickles** See the damage Understand the damage Survive the damage Lead – Materials For Fusion (low TRL) Dr Dave Bowden Lead – Materials for STEP (high TRL) **Dr Chris Hardie** Nuclear Data Irradiation and Waste campaigns Official

Editorial team

Dr David Armstrong (Oxford University)

Dr Amy Gandy (University of Sheffield)

Dr Sandy Knowles (University of Birmingham)

×

Dr Karl Whittle (University of Liverpool)

Dr Andrew Bowfield (Henry Royce Institute) Business Development Manager: Nuclear Materials

Dr Steven Jones (NAMRC) CTO / Lead High-Value Manufacturing Catapult's Joining Technology

Dr Jon Hyde (National Nuclear Labs) Jon is Senior Fellow in Materials and Head of R&D

Jack Astbury (Tokamak Energy) Reactor Technology Manager

5

Generic requirements – materials in fusion

, Xela
UK Atomic
Energy
Authority

Determine performance under irradiation	Characterise the impact of neutron dose on prioritised mechanical properties (creep, toughness, and particularly DBT options). Qualify the impact due to displacement damage (typically short timescale experiments) vs that due to transn / compositional effects (longer timescale experiments or experiments with gas implantation and varying starter compo Where proxies are used for neutrons, qualify outcomes accordingly.
	Determine the synergistic effect of other loads applied simultaneous with irradiation (mechanical, thermal, magnetic, electrical, cryogenic)? Stress combinations and stress cycling data adds value.
Demonstrate microstructural and chemical link/s to	Determine how crystallography – as well as the interfaces / grain size/ distribution/ density and size of precipitates (OI nanostructured steels) - impact defect structure, scaling and propagation.
irradiation resilience	Evaluate the dependency between chemical bond energies and defect structure and propagation (density functional the has indicated the latter is dependent to some extent, on the former).
Explore likely temporal evolution of bulk properties under	Establish whether there is a hysteresis characteristic over multiple irradiations or potential for new degradation mechanover time (for example, in fission there is concern about late blooming phases or late onset embrittlement)
operating conditions	Describe and understand evidence for damage recovery / annealing / saturation relative to time, dose and temperature Qualify for irradiation source. Do some microstructural elements improve resilience over time, under dose? Does dose time obviate optimised microstructures?
Understand the fuel interface	Determine whether, and to what extent, the material – post irradiation – retains deuterium and tritium. Establish the tra mechanism or link to degradation phenomenon.
	Determine the route to, and rate of, permeation of fuel (useful for safety and fuel budget perspectives).
Develop safer variants	Evaluate the potential to 'swop out' elements within the compositional space, for those less prone to long half lives, wh maintaining microstructural benefits established to this point, especially for mechanical properties (ie. develop low activity variants).
	Evaluate impact of microstructure on spallation and delamination under plasma conditions to improve waste control / s

Use of irradiation sources

- Neutron energy spectra not DT fusion
- * Transmutation gas production by doping can cause artifacts

MTR

Materials Test

Reactors

** Extremely high cost

1, 2.1**

H, D***

S, B.1, B.2

Local irradiation sources

Resource

UK Atomic Energy Authority

*Phoenix, ASTRAL, microNOVA are commercial systems

2028

ASP at AWE (neutron)

Compact neutron source facility (10¹² n/cm²/s) being scoped for Sellafield for 2025 (**Project STELLAR**) – may use Phoenix* type source

explored at University of Bristol, taking account of Japanese studies -

Inertial electrostatic confinement neutron source (fusor style) being

may use ASTRAL* or microNOVA* type source

Birmingham cyclotron (proton beam) – Additional in-situ corrosion+proton setup imminent: 650° C H₂O, molten salt, 1000°C with loading vacuum or O₂ atmosphere; stress rig installation Oct 2021

Birmingham high flux accelerator driven neutron source – Coming onstream 2022

Dalton Cumbrian Facility – Dual beam capability coming onstream H2, 2021 (ion and protons) For irradiation + Stress: DCF are developing a Deben rig to support the irradiation of thin ~20 µm samples under load, with in-situ DIC to measure creep strains as a function of the irradiation.

1 2026

INTERNATIONAL MATERIALS TEST REACTORS include: HFIR (USA), BOR60 (Russia), ANSTO (Australia), NRG (Netherlands), NCBJ (Poland), BR2 (Belgium), LVR-5 (Czech Republic), KURRI (Japan) etc. FUSION NEUTRON GENERATORS include: Frascati (Italy), NG TUD (Germany) and HINEG (China)

High flux

(10¹²

n/cm²/s)

Useful UK

beams and

sources

POST IRRADIATION EXAMINATION FACILITIES IN THE UK

UK Atomic Energy Authority

MRF IN 2021

Mechanical: nanoindenter, small scale tensile tester, ultrasonic fatigue rig, impedance spectroscopy

Microstructural: FIB, SEM, Atom probe

MRF IN 2023

Mechanical:

 dynamic (standard scale) tensile / compression testing

Thermophysical:

DSC, TGA, Laser flash, Dllatometer

Microstructural: Plasma FIB, TEM

NNL IN 2021

Highly Active:

Visual Inspection, measurements, Fuel analysis (fission gas, isotopics), density measurements, thermal properties, LOM, SEM, sample fabrication/ size reduction, electrical resistivity, fracture properties, strength testing, elastic properties, Pycnometry, GasDiffusivity/Permeability

Medium & Low active:

Low + medium load strength testing, micro/macro hardness, LOM, SEM (+WD, EBSD), (FEG) TEM (+EELS), FIB (+cryostage), PFIB (+SIMS), Laser flash, Raman, DSC, TGA, elastic properties, Pycnometry, Gas Diffusivity/Permeability, Machining

NNL IN 2023

Highly Active:

- laser Raman (3 λ)
- micro indenter, profilometry
- hydrogen charging
- electrochemistry
- small scale tensile testing
 - H analysis

Medium & Low active:

- ultramicrotome
- XRD

NNL IN 2025

MRF IN 2025

+ sample archive

Highly Active:

- small scale punch testing
- sample archive
- laser flash
- LIBS

Medium & Low active:

sample archive

Modelling – 'Roadmap within a roadmap'

MODELLING – Multiple levels of activity required from understanding damage mechanisms to predicting materials failure

UK Atomic Energy Authority

Resource

6

To predict onset of failure in components during operation.

MULTI PHASE/MULTI GRAIN/WELDS (MICROSTRUCTURAL APPROACH)

Direction and approximate magnitudes/ rates of change for selected properties based on key failure modes, is required, on down-selected materials, in the SHORT term.

It will be vital to account for environmental conditions in the models (e.g. coolant).

The link between damage and changes to thermal conductivity and other bulk properties should form part of this work. MOOSE framework (multi-physics C++ outputting directly to FEA) is available for Crystal Plasticity Finite Element Modelling to undertake such predictions but other platforms (and isogeometric algorithms) should also be considered. Can we use peridynamic modelling?

Refined and more accurate predictions with mechanistic understanding are required in the **MEDIUM** term for improved science on microstructural evolution.

Predictive models continuously validated with surveillance testing during operation, are envisaged LONG TERM.

To predict macroscopic stress and strain in materials during operation.

Official

STITCHING LENGTHSCALE AND TIMESCALE

A whole problem approach is advocated, to simulate materials responses in situ, applying tokamak operating conditions (especially dose-temperature of immediate environment).

Use of an elastic dipole tensor in Density Functional Theory – as well as Crystal Plasticity approaches -will enable moving from atoms to continuum modelling. Evolution of materials at doses >0.1dpa is non linear and requires priority efforts in the **SHORT term**. Quantitative models for deformation, including transmutation effects, should be possible in the **MEDIUM term**.

SINGLE PHASE - SINGLE GRAIN (ATOMISTIC APPROACH)

 Density functional theory and molecular dynamics have been used to deliver extensive understanding of DEFECTS in some structural materials moving to thermal equilibrium:

 Size and saturation (power law pertains moving from point defects to dislocations)

 Structure (is determined by local chemical bonds rather than elastic energy)

 Density (brings high stress, triggering avalanches, leading to dislocation networks and defect clusters)

 Non linearity (occurs as volume strain may be high where lattice obstacles)

 Volume (increase is high for interstitial defects but not equal-and-opposite for dimensional changes brought about by void defects)

 TRANSMUTATION triggered embrittlement lifetimes have been calculated for elements in mainstream DEMO materials.

 More work is needed on a wider range of materials (breeders, magnets, shields, insulators etc).

 Work on impact of nanoparticles (within grain / at grain boundary) is required.

 2018
 2020
 2022
 2024
 2026 >>>

Resource 7

Official

MODELLING FOR PERFORMANCE ASSURANCE ON IRRADIATED MATERIALS – UKAEA effort to 2021

UK Atomic Energy Authority

Baseline materials for STEP and DEMO, and some nearest alternatives	Engineering scale								
	Base materials: displacement damage	Base materials: transmutation damage (including gas)	Base materials: Tritium retention	Engineering materials: radiation hardness	Engineering materials: Failure mechanisms				
Structural materials EUROFER Castable RAFM complex nanostructured alloy ODS 	Fe, FeCr	Fe, FeCr	Only relevant with sub- optimal barrier coatings	Only for FeCr					
Armour materials Tungsten Other metals & alloys (Be, SMART) 			Only relevant with sub- optimal barrier coatings	W, less for alloys					
High heat flow materials CuCrZr 	Cu								
Breeder materials (substrate / breeder / amplifier) • SiCf-SiC composite • Li ceramics • BeTi ₁₂ • Liquids (LiPb)		Basic neutronics	N\A – extraction based on destructive methods as required						
Magnet materials resistive aluminium Nb₃Sn / NbTi doped REBCO 		Neutronics	N/A						
Window materials Beryllium, Molybdenum, Silica 		Neutronics							

Specific requirements – materials in application specific contexts

DIRECTION OF TRAVEL

Examples

×

UK Atomic Energy

Authority

METALS AND ALLOYS (STRUCTURAL / HEAT SINK / ARMOUR)

Castable variants - Complex	anical properties (especially										
Nanostructured Alloys (CNAs)					CERAMICS AND COATINGS (BLANKET WALLS, CIRCUIT COATINGS, FLOW SEPARATORS)						
Powder metallurgy variants - Oxide Dispersion Strengthened	Tune yttrium oxide content to reach acceptable balance between formability and irradiation resilience /high-	methods (superior powder size morphologies) to optimise stoic	Improve consistency in powder metallurgy methods (superior powder sizes/ morphologies) to optimise stoichiometry to reduce O. N and C contaminants and		CERAMIC MONOLITHS	Compare impact of manufacturing routes (e.g. SITE, NITE, CVI, PiP, polymeric precursor 3D printing) and architectures on relative irradiation resilience of resulting microstructure.		Develop Transient Phase Liquid Bonding compatible with fusion-relevant materials. Evaluate joinability with metals.		Consider thermo electric ceramic elements for heat-electrical conversion direct to plant.	
(ODS) Alloys Grade 91/92, RAFM	temperature performance.	ee. decrease activation in service. temperature (>550°C) ferritic martensitic urrent ductile to brittle transition accommod		of gas Atomised powder Reactive Synthesis (STAi	CERAMIC COMPOSITES:	Compare known benefit of neutron transparency of SiC with sparse data on irradiation breakdown of C in this composite at 14 MeV in context of breeder front wall or continuous (non welded) breeder structure.	Understand relative impact of SiC fibre nano-crystallinity	Find alternative, lower activation and non-pyrolysing		Understand role of macroscale porosity vs microscale atomic lattice layers for helium permeation and release under transmutation.	
and austenitic (316SS) steels	variant - pushing past current due temperature challenges.			ate transmutation He (incluc	SiCf-SiC TiC, ZrC, HfC variants Tungsten carbide Mullite-mullite		vs strength of fibre- matrix interface on irradiation resilience.	interphase materials, relative to graphite.	styles to modify electrical and radiation reflection at phase interfaces.		
Boron-strengthened steels (e.g. MARBN)	Can we replace Co in these?	Control rods contain Ni which needs lower activation alternative.			COATINGS: AIO _x , Er ₂ O ₃ , nitrides (CrN, BN)	Establish compatibility with coolant environments (aqueous, liquid metal, molten salt, gas) up to 650°C.	Corrosion trials utilising static and flowing conditions, with oxygen content monitoring.	Tritium permeation trials up to temperatures of 650°C.	Evaluation of additive manufacture (AM) to apply coatings to comple geometries.	Stacking trials to optimise thickness vs delamination.	
CuCrZr	Priority is to find a high temperatu (>300°C) variant for heat sinks.	 Self passivating surfaces needed for plasma facing variants in the event of oxygen exposure – focus on recrystallisation. Address coolant corrosion issues. 			(BREEDERS AND AMP	LIFIERS)					
Chronology based on priority or building complexity			CERAMIC SYSTEMS: Li orthosilicate	Improve crush resistance in pebble breeder Define r ceramics and explore alternative physiologies to pebbles.		required ^e Li Establish compatibility with coolant environments nent. (aqueous, liquid metal, molten salt, gas) up to 650°C.					
				Li metatitanate Li zirconate Alternatives with lead	Mitigate segregation of non-multip zones in BeTirz as amplifier.	olying Mitigate U impo amplifier comp	ounds. multipli	and investigate alternative Li er composites as well as broa f multipliers: LaPb3, ZrsPb4, YP	der environments (aqueous,		
5 Official				c	nronology based on priori	y or building complex	ity				

SUMMARY		2020	2024	2028	2032	2036	2040
	nts in fusion scape	STEP concept design starts	 ITER first plasma STEP concept design review 	DEMO Conceptual Design Consolidation	STEP build starts	ITER high power operation	 STEP first plasma DEMO build starts
Fusion Roadmap driver	Materials Roadmap	Near Term Stretch Targets / Disruptor					iptors
New regulatory framework for fusion without high level waste	Enable low activation waste predominance in fusion	 Weldable, cost-effective structural materials High purity raws for arm Full tritium inventory mode cooling circuit, detritiation 	nour, structure, divertor ba odel across plant material	paseline materials	 'Dust'-free armour ma 	iterials for safe recycling	
Breeding ratio >1; fuel self sustainability	Boost breeding ratio, block tritium losses	 New breeder materials b UK compact neutron sou Mitigate segregation of r Tritium permeation barrier 	ource facility non-multiplying zones in	BeTi ₁₂ amplifier	 Additive manufactured Li ceramic as continuous blanket Feasible alternative multipliers (LaPb₃, Zr₅Pb₄, YPb₂) Optimised tritium extraction microstructures 		
High fusion energy through effective confinement at high magnetic fields (>8T)	Define the possible in irradiation resilient magnets, insulation at cryogenic temperatures	 Irradiation tests on REBO operating T, spectrum, E Improved insulation e.g. Understanding of anneal resistive aluminium 	B . novel amorphous ceram	mics or imides	 Cryogenic irradiation t overtest to 0.1dpa) 	tests on REBCO beyond ∼	0.001 dpa (aiming for
Plant efficiency (100 MWe)	Develop higher temperature structural materials (>550°C)	 Fabrication-scale microstructural tuning of castable complex nanostructured alloys (carbide / nitride / more inert precipitates) to reach >600°C Optimised SiC-SiC composites (nanostructured SiC fibre for enhanced irradiation resilience; pyrolysis free interphases; transmutation gas routine architecture) Weldable and lower cost ODS / HiP'd powermetallurgy variants to re 700°C Additive manufactured divertor materials with integrated cooling structures Thermo electric first wall /divertor material for direct plant output contribution 					tegrated cooling
Plant availability (50%) and cost (£10bn) Official	Deliver engineering assurance for materials under powerplant conditions	 Synergistic dual ion beam irradiation campaigns (proton + load; proton + corrosion; proton + cryo) on baseline materials for low dpa mechanical property degradation First Finite Element based failure prediction models <i>across</i> microstructures Simulated in situ (dose-temperature conditions) material response via 'whole problem approach' utilising physics-derived atomistic response laws Synergistic irradiation campaigns (neutron + load; neutron + corrosid neutron + cryo) on baseline and novel materials with emphasis on hi dpa impact quantification on mechanical properties (especially creep fatigue) Stitched length- and time-scale failure prediction models Modelled transmutation gas impact on mechanical degradation 					with emphasis on high ties (especially creep- n models

Next steps...

- ✓ This Roadmap aims to place before the UK materials community a STARTING POINT there should be iterations of the narrative as familiarity grows
- ✓ It has been LOCALLY SHAPED but there are many opportunities to COLLABORATE INTERNATIONALLY
- Early hooks are offered for the UK materials SUPPLY CHAIN and REGULATORS so vital to delivering commercial fusion
- ✓ The aim is to gather stakeholders around common themes and GENERATE MOMENTUM there is an implied invitation to get involved from experiment to investment and planning.... Via a National Steering Group (~ Editorial Group)

eratior

UK Atomic Energy Authority

Next steps - I

Materials: Engineering assurance

Materials: Structural >550°C

Low activity

Supervisors: Professor Susannah Speller and Dr Rebecca Nicholls X-ray spectroscopy of high temperature superconductors for understanding radiation damage mechanisms

S C Speller / C R M Grovenor Ultra low resistance joints for high temperature superconducting magnets

X. UK Atomic Energy Authority

Next steps - II

Materials: **Engineering assurance**

Materials:

Structural

Materials:

Magnets > 8T

>550°C

7

SiC SiC working group

Of

Sheffield.

× **UK** Atomic Energy Authority

The University of Manchester

BIRMINGHAM

NEURONE bid

Materials: Li based breeders

Materials:

_ow activity

Prifysgol Abertawe

