

UK Academics Meeting, Cambridge

8th September 2021

U-Battery Applications

Sector	Key application	Market Size 2035	Market drivers	Market Size 2050	BATTERY Local Modular Energy Target
Remote communities	Diesel/oil replacement	125-150 units	Regional electrification; wider adoption rates	+100 units	PRIORITY
High value mining	Asset life; economics; diesel replacement demanded	25 units	Wider adoption rates; learning curve economics	many units	
Industrial CHP	Replacing gas/carbon red.	175-350 units	Net zero targets; application of carbon tax	+30 units	
Hydrogen economy	Poly-generation for transport and energy storage	75-100 units	Net zero targets; 18% of final energy demand by 2050	Order of magnitude higher than 2035 est.**	PRIORITY
Data centres	Payback over short life	50 units	Gig-economy growth	+40 units	
Low value mining	Asset life; economics	30 units	Wider adoption rates; Learning curve economics	+20 units	
Desalination	Remote location	25 units	Population growth; climate change	+110 units	
Flexible baseload	LCOE competitive gen.	100-190 units	Wider adoption rates; Learning curve economics	+110 units	
Nuclear power back-up	Safety/life extensions	230 units	NPP growth; new nuclear countries	+30 units	
Strategic military	NATO requirements	60 units	Wider adoption (50% rate); higher defence spending	+60 units	×
Total estimated potential		~900-1,200 units		+ ~500 units + 1,000 H	2 overlay

* Delivered by increased adoption and/or market growth beyond 2040. Default growth is EIA 1% p.a.

** Up to 1,300 units based on increase adoption of hydrogen to decarbonise the transport sector; for which MIT foresees a global demand of 1,315GWe for nuclear capacity

Source: Internal Urenco review of market studies by Nuvia, Collinson Grant, NRCan, Aurora, University of Manchester

Application: Remote communities and mines

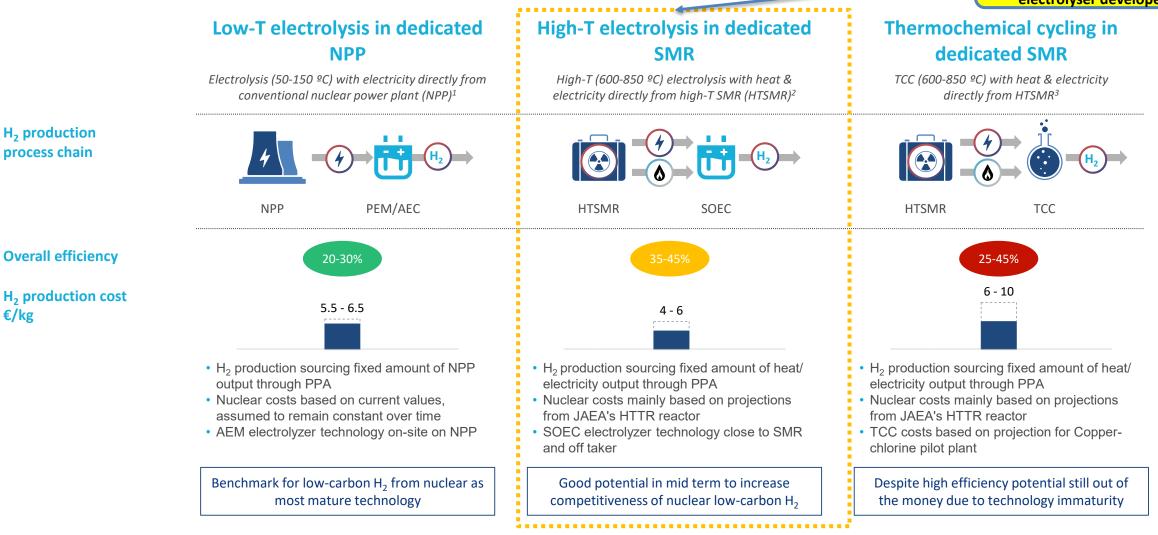
The opportunity:

- U-Battery's modularity and unique capabilities, make it significantly adaptable to meet broader local needs in remote communities and off-grid location, such as mining operations. Typically energy costs are 2-4 times as high as UK.
- In Canada, remote regions facing higher food and energy costs could see these significantly reduced and low-carbon sustainable energy generated for these diesel-dependent communities
- Improve the competitiveness of Canadian mining operations in remote areas like Ontario's Ring of Fire and other parks of Northern Canada, by accelerating their transition away from diesel.
- U-Battery could provide a cheaper, green electricity solution for remote communities and mines reliant on diesel, which is transported via air freight.
- Natural Resources Canada has identified 600 diesel generators for remote communities and mine sites that could be replaced by U-Batteries
- While Canada is a first focus, there is a global market for remote energy supply

Indicative cost c. £100-200/MWe¹ (vs flown in diesel c.£400/MWe)²

Application: Decarbonisation of industrial heat

The opportunity:


- Providing clean process heat and electricity to the hard to decarbonise Foundation Industries, which currently contributing 10% of all UK CO2 emissions
- The sector is worth around £52 billion to the UK economy alone, provides 500,000 skilled jobs in 31,400 firms, mainly in North of England and Midlands
- We have identified a sizeable initial market
- Particular focus of UK Government, but with global potential
- Potential to scale up reactor size within inherent safety envelope to gain economies of scale for specific use cases

Sector	Use	Sector	Use	
Glass	Heating raw materials and annealing	Ceramics	Process heat need 220-650 ^o C for drying and spray drying	Indicative cost
Paper	Drying paper	Minerals	Cement production	c.£100-120/MWh ¹ – at 10MV perhaps half at 50MWt an reducing further at larger sc
Steel	Less likely – due to scale of demand	Chemical	Heating fluids at 450 ^o C	

Application: Clean hydrogen production

Use of SMRs in high temperature hydrogen production could be more competitive than conventional nuclear powered low temperature solutions

U-Battery study underway with a leading UK solid oxide electrolyser developer

€/kg

High maturity, tested in field

UK Government Support

Department for Business, Energy & Industrial Strategy

UK Government has selected HTGR as AMR technology (July 2021)


- Following Royal Society report HTGRs are now being considered as focus for AMR demonstrator **£170m budget**.
- Recent "Call for Evidence" by 9 September reinforces the likelihood of HTGR selection.
- Budget is to cover supply chain and regulatory framework as well as direct reactor development costs
- HTGRs prioritized since they "could help unlock the decarbonisation of several energy vectors such as efficient <u>hydrogen production</u> and <u>industrial processes</u> like steel, cement and paper production".
- NIRAB has recommended further funding for AMR development in future spending periods

U-Battery is natural focus for Government initiative – it has the potential to be a "national endeavour"

- ✓ U-Battery is the only HTGR design of three projects currently funded under the AMR programme
- ✓ UK Government is aligned with U-Battery on key applications hydrogen and industrial process heat
- ✓ BEIS are inviting U-Battery to propose a route forward with their funding

U-Battery is well placed.

