

This information is provided by Rolls-Royce in good faith based upon the latest information available to it; no warranty or representation is given; no contractual or other binding commitment is implied

Tomorrow's energy market will look fundamentally different as the world transitions to a low carbon environment

Only 13% global energy is low carbon

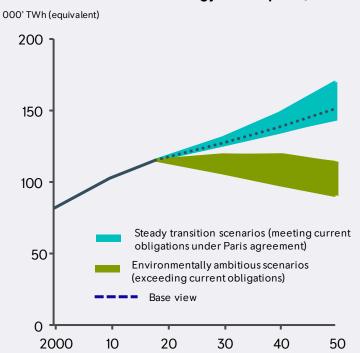
The challenge is huge, covering transport and heat as well as grid electricity

Decarbonisation obligations are having a material impact on energy policies

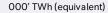
There are a limited number of solutions to decarbonising many sectors. Most need more clean electricity

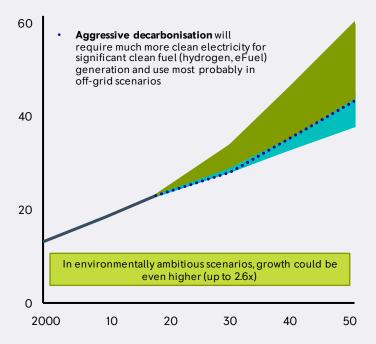
The demand for clean electricity is set to grow considerably in any scenario

Industrial companies are seeking to decarbonise production quickly and economically



Our SMR provides a low cost, investible, and deliverable solution to predictable clean electricity at a scale unmatched by other clean sources




Energy forecasts may vary but electricity growth is substantial in any future energy system scenario

Consensus¹ outlook on final energy consumption (2000-2050F)

Consensus¹ outlook on total electricity production (2000-2050F)

Source: LEK Note:

Consensus forecasters of energy and electricity growth include Bloomberg, BP, DNV-GL, EIA, Exxon Mobil, IEA and IRENA

Rolls-Royce SMR is a revolutionary nuclear product; factory fabricated, road transported and site assembled.

The RR SMR approach is a holistic, integrated power station and not just a nuclear reactor design.

~470 MWe output

50 Hz design

Proven PWR Technology & Standard Fuel

Power station delivery as a turnkey project

4 yr Construction (Nth unit)

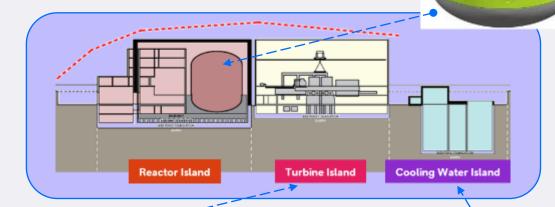
Enhanced Gen III+ levels of safety and security

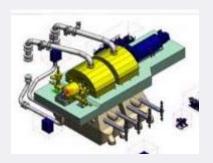
1st unit on grid early 2030s

Capital cost under £1.8 Bn*

Adaptable, multi-use power & heat output

LCOE £35-£50 per MWh*


Rolls Royce SMRs - Low cost, Deliverable, Investable Low Carbon Power



Rolls-Royce SMR plant: Key Features

Reactor Systems

- A robust and licensable design incorporating:
 - o A 3-loop PWR
 - 3 reactor coolant pumps (one in each loop)
 - o 3 vertical **u-tube** steam generators
 - Steam pressurised using a pressuriser
- Nuclear fuel is industry standard 17x17 assembly
 UO₂ enriched up to 4.95%,
- Boron free design to enable a low environmental impact and eliminate handling hazards.

Turbine Island

 Comprises a commercially available turbine and generator set

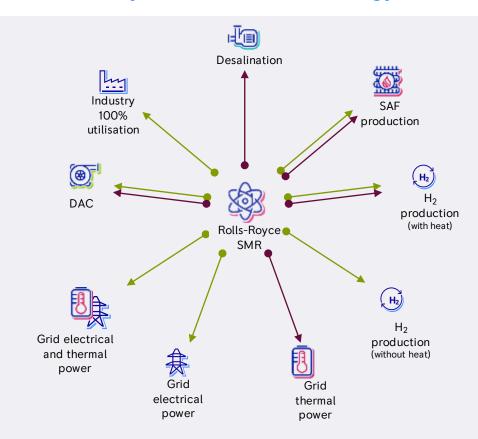
Cooling Water Island

 Indirect cooling system utilises modular cooling towers to remove heat from the turbine island

The heat and power from SMRs supports a range of industrial uses. Shared usage minimises the cost of plant ownership and maximises the economic efficiency of the low carbon energy.

One Rolls-Royce SMR and associated plant can....

Power a million homes


Produce 170 tonnes of H₂ per day

Produce 280 tonnes of net zero synthetic fuel per day

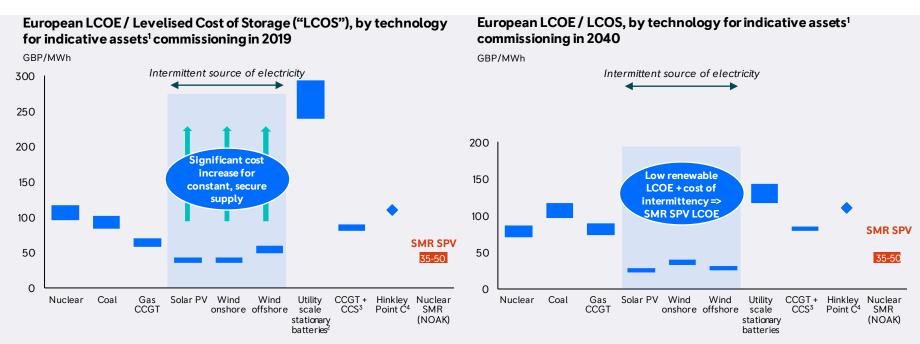
Heat or cool a city the size of Sheffield (pop c580,000)

Efficiency does not necessarily equate to economical value

Innovations that focus on delivering ultimate market value are important

Engineering efficiency is the ratio between the energy needed to power a process vs the energy the process creates

Economic efficiency is the ratio between a company's ability to invest in and use its assets vs the income they generate



Objective: Reduce overall cost of ownership through:

- Total plant design integration / optimisation
- Maximise power output (for no further capital / op cost / risk)
- Maximising availability
- Maximising reliability
- Reduce outage periods
- Optimise predictive maintenance
- Reduce inventory & optimise spares planning

The LCOE for SMRs is similar to renewable LCOEs and is significantly cheaper once storage costs for renewables are included

Sources: IEA WEO 2020, BEIS Electricity Generation Cost Report 2020

Notes: CCGT = Combined Cycle Gas Turbine; CCS = Carbon Capture and Storage; USD = United States Dollar

1. Data from IEA WEO 2020, converted from USD to GBP (0.7) with +/-10% range applied

IEA Data - 2020 base year

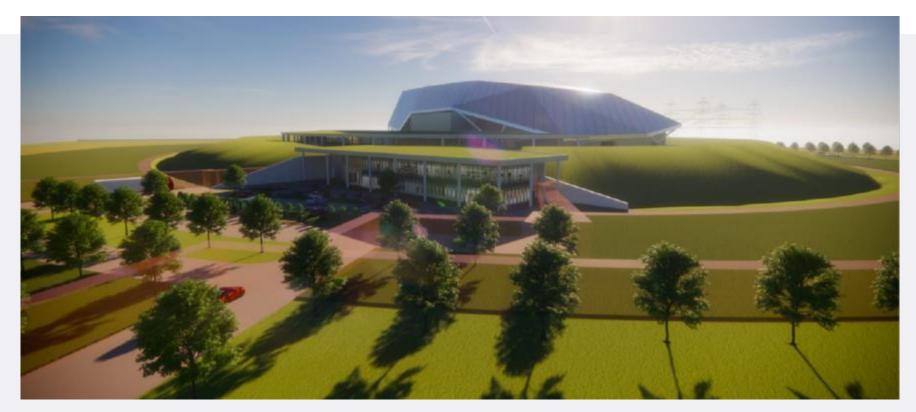
3. Data from BEIS Electricity Generation Cost Report 2020 - Refers to 2025 LCOE as this is the first estimated deployment date of this technology

4. GBP92.5 CFD agreed price, scaled by CPI to 2019, as per CFD agreement

SMR Range determined by financing mechanism

Lessons from Aerospace?

There are many examples of high profile projects that have not delivered on expectations



- Dassault Mercure 12 units built
 - Flying range of aircraft insufficient to meet <u>customer requirements</u>
- Tupolev TU-144 16 units built
 - <u>Pushed technology boundaries</u>, the aircraft was blighted by accidents leading to withdrawal from service
- Concorde 20 units built
 - Sales suffered from <u>regulatory restrictions</u> imposed and <u>poor</u> <u>operational economics</u>
- Airbus A380
 - Required <u>expensive infrastructure changes</u> at airports. Ultimately too large and <u>economics poor</u>

Questions

This information is provided by Rolls-Royce in good faith based upon the latest information available to it; no warranty or representation is given; no contractual or other binding commitment is implied

