

Nuclear Resilience Modelling Framework for Improved Safety - NuRes Indo-UK Civil Nuclear Collaboration - Phase 4

University of Nottingham

University of Liverpool/Strathclyde

Loughborough University

Bhabha Atomic Research Centre (BARC)

Indira Gandhi Centre for Atomic Research

Engineering and Physical Sciences Research Council

People involved

University of Nottingham - John Andrews and Mark Wootton
University of Liverpool/Strathclyde – Edoardo Patelli and T.V. Santosh
Loughborough University - Rundong Yan and Sarah Dunnett
Bhabha Atomic Research Centre – Gopika Vinod
Indira Gandhi Centre for Atomic Research – John Arul

Background and aim

Due to new emerging threat types and more complex reactor designs traditional risk analysis methods are no longer adequate.

Use the **resilience** philosophy to achieve reactor system **designs**, **operating regimes** and **recovery strategies**.

A **safe** and **rapid response** for any type of threat occurring at **any point** of its lifetime.

Resilience metrics

The project aims to produce a mathematical modelling framework which uses the resilience philosophy to achieve reactor system designs, operating regimes and recovery strategies which result in a safe and rapid response for any type of threat occurring at any point of its lifetime.

Safety rather than performance.

Three quantities are employed to characterise resilience metrics:

Absorptive capacity - Operation and health states of the reactor core.

Adaptive capacity - Maintain its performance.

Recoverability - Time needed to fully recover.

Detection, Response and Recovery

Petri Nets

Petri Net (PN) consists of three basic elements:

- Places (circles) represent possible states of the system
- **Transitions** (rectangles) are events or actions which cause the change of state
 - Immediate (filled)
 - ➤ Timed
- **Arcs** (arrows) simply connects a place with a transition or a transition with a place

D1

Petri Net Modelling Structure

- Reactor System Petri Net (RSPN)
- Immediate Response Petri Net (IRPN)
- Mitigation Process Petri Net (MPPN)
- Recovery and Maintenance Petri Net (RMPN)

Figure : Reactor System Petri Net (RSPN)

External disruptive event – case study

- The event magnitude is assumed to be similar with **Fukushima** Daiichi nuclear disaster on 11th/03/2011.
- The impacts of the earthquake, tsunami and flood to the experimental CANDU reactor are considered.
- Only the power supply is considered.

Subsystem(s)	Probability to be damaged
Offsite power	100 % (earthquake, tsunami, and flood)
Onsite power	100 % (reactor has to shut down due to safety issues after detecting the earthquake)
GDCS	40% (assumed)
SDS1	5% (assumed)
SDS2	20% (assumed)
SCS	70% (assumed)
Vacuum building	20% (assumed)
SDG	100% (tsunami and flood)
EDG	92.3% (12 out of 13 failed)
Fire trucks	20% (assumed)
Road	10% no damage; 10% moderate damage; 80% major damage (assumed)

External disruptive event – case study

Final status	Probability
Normal operation continued <i>P_N</i>	0%
Recovery within 12 days P _{short}	9.55%
Recovery longer than 12 days but shorter than 116 days P _{mid}	24.81%
Recovery longer than 116 days but shorter than 3.5 years P _{long}	13.46%
Reactor damage before recovery P _{RD}	33.70%
Core melt P _{CM}	52.18%

What's next

Use the model to investigate the Impact of different factors on the resilience of reactor systems:

- **Different external disruptive events** (e.g., earthquake, tsunamis, and hurricane)
- **More/less safety systems** (e.g., more fire trucks)
- **Different safety systems** (e.g., HPSIS with larger capacity)
- Effectiveness of emergency response teams (e.g., higher probability of emergency recovery, and less time to reach target locations)
- Effectiveness of offsite supports (e.g., shorter distance to the NPP)

Automate the construction of the models from the operators/designers system description

Thank You

