

Nuclear Co-Generation Opportunities **Bill Lee and Michael Rushton** Nuclear Futures Institute, Bangor University. Nuclear Academics Meeting, Sept 8th 2021.

Nuclear Lab Technicians Group

Creating a Community for Technicians

- Close communication between labs
- Social events
- Workshops
- Webinars

Improving Nuclear Lab Safety

- Accident case studies
- Lab visits \bullet
- Harmonisation of working practices \bullet

File and Document Sharing

- Upload documents to the NLT website
- View and download documents from other labs
- Leave comments on documents for future revisions
- Best practises, COSHH forms, Risk **Assessments**

Dalton Cumbrian Facility, Manchester

Nuclear Futures Institute, Bangor

AWE: Aldermaston and Burghfield

First meeting to be held on the 30th September 2021

Contact David Williams for more information: david.wyn.williams@bangor.ac.uk

https://nubu.nu/

Interested Organisations

Outline

- Royal Society Policy Briefing Report main findings
- Opportunities and Progress

Nuclear cogeneration: civil nuclear energy in a low-carbon future

POLICY BRIEFING

THE ROYAL SOCIETY

Nuclear Co-generation

 Options available depend on reactor type. e.g. some routes for hydrogen production need >800°C so limited to High Temp Gas Reactors (HTGR) or fusion.

Radiation

Electricity

Medical Isotopes

synthesis

Co-Generation Potential Applications

- Low-temperature co-gen: \bullet
 - **District heating** ightarrow
 - Seawater desalination ullet
- **High-temperature co-gen:** ightarrow
 - Decarbonising industry through ightarrownuclear process heating

- \bullet
- ightarrow
- •

Hydrogen production Sustainable synthetic fuel Direct Air Capture of CO₂ Thermal energy storage **Medical Isotope production**

Industrial Processes LWR/SMR AMR

UNIVERSITY

Electricity when electricity is ightarrowneeded – e.g. when renewables generate less.

- Other 'products' when ightarrowelectricity needs are met by renewables.
- But products that contribute to ightarrowthose 'hard to reach' areas of decarbonisation.
 - Ammonia, direct air capture, synthetic fuels, hydrogen.

1600°C

Low-temperature Co-Gen: **District Heating**

- 18% of UK carbon emissions from home heating
- Nuclear experience mainly in cold climates (Russia, Ukraine, Slovakia, Switzerland, China etc.)
- Could be considered in UK with SMRs.

District heating used from Haiyang NPP in Shandong province, China eventually will heat all houses in city (population 300,000).

Low-Temperature Co-Gen: Seawater Desalination

- Use low temperature steam/heat in thermal processes:
 - Multi-Stage Flash (MSF), \bullet
 - Multiple Effect Distillation (MED). \bullet
- Use electricity to drive membrane processes: •
 - Reverse Osmosis (RO). \bullet
- Most current desalination plants use fossil fuels • so contribute to global warming.
- Currently used by NPP in Japan, Pakistan, India, • Kazakhstan and planned in UAE and Saudi Arabia.
- Key driver for Australia to pursue nuclear technologies.
- Small and medium sized nuclear reactors are \bullet suitable for desalination, often with cogeneration of electricity.
- Not needed in UK.

Multi-Stage Flash Distillation

High-temperature Co-Gen: Industrial Process Heating

- Contributes 14% UK carbon emissions
- 50% of UK industrial process heat used by energy intensive users (e.g. iron and steel, ceramics, cement, lime etc.).
- Typically need high temperature heat (>400°C) so favours HT reactors (and UK has good experience with AGRs).
- Could cluster industry around the reactors in areas with energy intensive industries e.g South Wales, Hartlepool, Deeside.
- Costs competitive but issues with
 - Cross sector regulation of nuclear and energy intensive industries
 - Ideally use proven nuclear technology •
 - Need sound, long term investment case.
- Research opportunity e.g. safety and regulation. \bullet

High-temperature Co-Gen: Hydrogen Production

- Moving towards hydrogen economy •
- Hydrogen from nuclear via •
 - Water electrolysis
 - Steam (600-1000°C) electrolysis more efficient than water \bullet
 - Thermochemical (e.g. S-I, Cu-Cl and hybrid S cycles) using nuclear \bullet heat.
 - Steam reform fossil fuels using nuclear heat hydrogen from methane and need CCS.
- Research opportunity e.g. materials for high temperature and corrosive • environments, improved catalysts, electrolyte and electrode materials.

High-temperature Co-Gen: Synthetic Fuel Production

- High-temperature heat to produce feedstocks:
 - Single molecule e.g. ammonia via Haber-Bosch process which uses N from the air and H from natural gas at 400-450°C with iron catalyst at 200 atm.

High-temperature Co-Gen: Synthetic Fuel Production

- High-temperature heat to produce feedstocks:
 - Complex molecules e.g. 0 synthetic fuels for transportation (shipping, aircraft) via Fischer-Tropsch process which converts CO + H₂ to liquid hydrocarbons at 150-300°C in presence of metal catalyst at ~20 atm.

Natural Gas

High-temperature Co-Gen: Direct Air Capture of CO₂

- Both liquid solvent and solid sorbent technologies are energy intensive requiring 80% thermal 20% electricity energy split.
- Liquid sorbent needs T up to 900°C, solid sorbent $< 150^{\circ}$ C.
- Sequester or reuse captured CO₂ e.g. as feedstock for polymers or convert to CO and use in Mond process to extract and purify Ni.

Ni reacts with CO (leaving the impurities behind), to form $Ni(CO)_4$.

The Ni(CO)₄ is passed through a tower filled with nickel pellets at a high velocity and 400K.

Pure Ni plates out on the pellets.

High-temperature Co-Gen: Thermal Energy Storage

- Store thermal energy from NPP for later use or as buffer in Co-Gen applications.
- Already deployed alongside concentrated solar power stations but limited to sunny locations.
- Various storage media being examined e.g. clay-based refractory brick chequer work, concrete, molten salts, phase change materials etc.
- Research opportunity e.g. to assess • potential and safety of operation.

FIRES – FIrebrick Resistance heated Energy Storage – Forsberg MIT

Industrial Heat Park

District Heating

Lower temperature heat could be used to provide domestic and commercial hot water and heating loads up to 80km from the reactor.

Advanced Modular Reactor

Cement Production

Very high temperature applications could use oxygen and hydrogen gas mixes. Firing cement kilns with low carbon oxyhydrogen mixtures could help decarbonise this industry.

Thermochemical H₂ Production

High-grade process heat allows efficient production of hydrogen through thermochemical routes.

Steel Production

Nuclear process heat at 950°C used with clean hydrogen allows smelting of iron via the direct reduction route. The product of this would be re-melted using electricity from the reator in electric arc furnaces.

Chemical Plant

Using process heat and hydrogen to produce products such as ammonia, fertiliser and synthetic fuels.

Hartlepool AGR

Venator TiO₂ Pigment Production

NGA, GEBCO

Oil and Gas Terminal

46 45 4 10

Ineos Nitriles (closed)

BOC Hydrogen Teesside

edcar B

Rent Pr

Redcar Blast Furnace

Huntsman Polyurethanes

1 km

Data Centres

- Consumed 1% of the World's electricity (205 TWh).
- It was 1% in 2010 too, despite:
 - Internet traffic ×10.
 - Storage ×25.

- - unusual.

• Efficiencies of scale are partly responsible for this. • Hyperscale data-centres (>40,000 sq ft, 3700 m²) with power requirements above 100 MW are not

Data Centres

- Hyperscale computing is a good match for nuclear.
- High availability is essential.
- Share cooling infrastructure with nuclear plant?
- Nuclear heat used with absorption/adsorption chillers to cool data-centre – reducing electricity demand.

Cooling & **Power Handling**

MW available power. 270 MW already occupied. 72 2-125 kW per rack kV Super-Grid connection. 400 134,500 m²

Equipment	Servers	Storage	
43%	43%	11%	٩
	Networking 3%		

CWL1, Newport, Wales. Europe's Largest Data Centre Campus

Captive Power

- Privately owned power-stations.
- Electricity parks not unusual in developing countries with unreliable electricity grids.
- Ownership models for existing captive power or CHP, projects could be adopted for nuclear co-generation.
- Mechanisms are required to prevent power-station owners pulling the rug on viable companies that rely on their heat and power for existence.
- Could high levels of renewables introduce grid instability to the UK and make reliable, captive nuclear plants attractive to some large energy users?

Challenges

- Safety and Security.
- Regulation.
- Waste reuse, recycle and disposal.
- Economics and business model.
- Public attitudes and behavioural science opportunity.
- Need to coordinate UK Co-Gen R&D certainly via a coordinated Network+ and possibly via a Centre of Excellence.

