

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

The University of Manchester Dalton Nuclear Institute

Fred Currell Director 8 September 2021

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

WHO WE ARE: The University of Manchester's Dalton Cumbrian Facility (DCF) is the UK's largest academic research facility dedicated to the area of radiation science.

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

"The DCF boasts unique features that are unrivalled in the UK and among the best world-wide."

Nuclear Decommissioning Authority, 2017, Dalton Cumbrian Facility: celebrating a 10-year journey to success.

The growth of the Dalton Cumbrian Facility

Growth of DCF	2011	2017	2021
Businesses using DCF	0	15	35
Universities using DCF	0	19	35
Associated industrial/academic staff	0	120	200

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

OUR LOCATION:

1. Dalton Cumbrian Facility

KEY SITES:2. University of Manchester

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

A diverse and growing research community

he University of Manchester Dalton Nuclear Institute

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

Our facilities

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

X-ray cabinet source (Precision MultiRad350)

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

X-ray cabinet source (Precision MultiRad350)

- 30 350 kVp
- Dose rates up to 140 Gy/min
- Moderate penetration
- Turntable
- Hypoxic chamber
- Collimators
- Funded by the Henry Royce Institute

Dalton Cumprian Facility

Ēx(

nce

Centre of R

FTS Model 812 Gamma Irradiator

POSITION

Centre of R

FTS Model 812 Gamma Irradiator

- 1MeV
- 330 Gy/min 30 Gy/hr
- Higher penetration
- 2 access ports (top and side) allows flowing liquid samples in and out
- Turntables and various sample holders available

MANCHESTER 1824

niversity of Mancheste on Nuclear Institute

Dalton Cumbrian Facility

Centre of Radiation Science Excilence

Ion Beam Accelerators

MANCHESTER 1824

ersity of Manches

Nuclear Institute

Daiton Cumbrian Facility

Centre of Radiation Science Excilence

Ion Beam Accelerators

5MV tandem ion accelerator:
10 MeV ¹H⁺ up to 100 μA, ~0.5 DPA/day
15 MeV ⁴He²⁺ up to 15 μA
25 MeV ¹²C⁴⁺ up to 1 μA
Heavy ions, e.g. Au²⁻⁴⁺ 10s MeV ~5 DPA/hour
[Highly sample dependent - please ask]

2.5MV single ended ion accelerator:
Light ion accelerator (e.g. ¹H⁺ and ⁴He²⁺)

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

ant.

Beam lines

а.

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

Beam lines

- High beam energy/high beam current experiments
 Beam line "hot cell" to allow higher penetration & higher damage rate studies
- Equipment for the handling, storage & onward transport to CCFE & NNL CL of activated samples
- In-situ experimental equipment: Ion beam analysis (PIXE, RBS, NRA & ERDA), high temperature/high pressure autoclave and loop

Dalton Cumbrian Facility

entre of Radiation Science Excellence

Characterisation and Analysis

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

Characterisation and Analysis

Scanning Electron Microscope Electron **Backscatter** Diffraction, Wavelength Dispersive Spectroscopy **Energy Dispersive** Spectroscopy, Heating/cooling & tensile stage. 2D-XRD.

Time-domain thermoreflectance; Optical microscopes; Micro hardness testing, FT-IR Spectrometer/FT-Raman Spectrometer/Rama n Microscopy, **3D** printing (plastics and stainless steel)

Differential Centrifuge (nanosizing) HPLC, Ion Chromatography; Gas Chromatography; Surface Area & Porosity Analyser; Fluorescence Spectrophotometer; UV-Vis Spectrometer; Total Organic Carbon & Nitrogen Analyser, EPR, etc...

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

Remote access available

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

Projects under development

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

New end station. Secondary Ion Mass Spec (SIMS) + Electron Energy Loss Spectroscopy (EELS)

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

Beamline upgrades (planned for next summer)

EPSRC NUUF funded: Highest proton currents at our Maximum energy Daresbury Labs STFC donation: 70 ns pulses of light ions

Ferrite frame

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

PART -	THE TEAM:	
	 Ion beam team: Andy Smith Samir de Moraes Shubeita Nick Mason Carl Andrews 	Gamma team:Ruth EdgeKevin Warren
	 Analytical team: Gyorgyi Glodan Chetna Tyagi Claire Trevaskis Sally Wilson 	 Administrative team: Rebecca Shepherd Lian Murdoch Morven Wilson Amy Johnson

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

COVID-19 RESTRICTIONS

TARGET MET:

150 days of ion beam usage over the past 12 months

SAFE WORKING ENVIRONMENT:

- Rigorous cleaning schedule
- Clearly defined room capacity and scheduled visits
 - Remote access available
 - Flexible response to changing restrictions

Dalton Cumbrian Facility

Centre of Radiation Science Excellence

• Environment

Get in touch

Amy Johnson Research Programmes Administrator

dcf.experiments@manchester.ac.uk

THE T

Dalton Cumbrian Facility

Centre of Radiation Science Excellence