

NUCLEAR AMRC ADVANCED MANUFACTURING RESEARCH CENTRE

Advancing UK manufacturing

NUCLEAR AMRC Advanced manufacturing research centre

Nuclear Landscape

Andrew Storer - Chief Executive Officer Neil Murray - Business Development Manager

8 September 2021

Objectives

- Nuclear Landscape and the road to 2050
- AMR/SMR/Fusion What are Nuclear AMRC doing
- Cogeneration

UK civil nuclear 2021

Current generation

- EDF Energy: 13 reactors at 7 sites*
- Total capacity of 9GWe
- Supply chain requirements c£600M pa
- Most to be retired 2023–30
- Sizewell B due to be retired 2035

Existing 9GWe capacity will have gone by 2035

*Dungeness B (2x AGR) retired June 2021

Net zero by 2050

Total decarbonisation of electricity generation

Total demand to double.

Low-carbon generation needs to quadruple.

Mix of renewables & low-carbon baseload.

Nuclear requirement:

- Up to 40GWe by 2050
- 50% of grid capacity

Electricity supply under centralised 'Clockwork' pathway: Energy Systems Catapult, *Innovating to Net Zero* (2020)

New nuclear capacity

- 40GWe nuclear needed by 2050
- Existing fleet gone by 2035

Gigawatt scale (GW)

- Up to 19GWe new capacity has been proposed at six sites but <u>only</u> Hinkley Point C (3.6GWe) is under construction.
- Sizewell C & Bradwell B awaiting go-ahead.

AMR/SMR

 A number of smaller capacity reactors under development for deployment in early 2030s

NOTE: dashed vertical lines represent parliamentary stages.

SMR/AMR

- Around 50 Gen III+ and Gen IV designs globally
- Range of outputs from 4MWe to 500MWe*
- Many are more focused on cogeneration hydrogen / district heating
- Factory construction

*IAEA defines SMR as output less than 300MWe

Terrestrial IMSR type 195MWe

U-battery Micro HTGR type (MMR) 4MWe

NUSCALE POWER MODULE

Rolls-Royce SMR

A new type of nuclear power station

- Compact modular design.
- 470MWe Gen III+ PWR.
- Target cost £1.6bn, £40-60/MWh.

Proposed UK programme of up to 16 power stations by 2050

- 40,000 jobs.
- £52 billion economic value.
- £250 billion export potential.

Rolls-Royce SMR

Phase 1: £36M programme. UK companies and R&D institutions, backed by government (£18M + match)

Phase 2: Up to £215 million match funding announced November 2020.

Nuclear AMRC role

Manufacturing Capability Acquisition (MCA) and HPV factory preparation

- Robotic & fixed machining
- Cleanliness
- Large-scale metrology
- Component handling & lifting
- Digital manufacturing
- Large-scale prototype manufacture

Advanced modular reactors

- Range of Gen IV technologies.
- Industrial applications in co-generation, hydrogen production, grid balancing.
- Government £170M funding for R&D programme to support AMR demonstrator by early 2030s.
- HTGR call for evidence (9th Sep closes)
- AMR competition Phase 2 funding of £10M each:
- U-Battery compact high-temperature gas-cooled fission reactor (HTGR)
- Westinghouse lead-cooled fast reactor (LFR)
- Tokamak Energy ST40 spherical tokamak fusion reactor.
- Gen IV Forum Nuclear AMRC leads for UK on advanced manufacturing & materials.

Fusion - UKAEA Yorkshire

New material testing facility

- £22 million development on Advanced Manufacturing Park.
- To develop and test technologies for fusion materials and components.
- 40 highly-skilled jobs.
- Working with regional research and industrial partners.
- Funded through Nuclear Sector Deal.

Manufacturing Technologies Applicable to GEN IV & Fusion

Commercial in Confidence

SMR/AMR – Complex Geometry Near Net Shape (NNS) Components

Reduce the burden on the forging capacity for complex geometry pressure vessel components.

SMR Lower Head

- 66% Scale
- SA508 Gr3. Cl1.
- Achieved geometry
- 3250Kg

SMR Upper Head

- 40% Scale
- SA508 Gr3. Cl1.
- 27 penetrations
- 1650Kg

All images courtesy of EPRI

Waste container research

Full manufacture cost lifecycle cost optimisation

Method and material optimisation

Factory optimisation

Process optimisation

Product design optimisation

Supported by:

Case study

SMR pressure vessel manufacture

Challenge

Reduce the production time for an SMR pressure vessel from x2.5 years to less than 12 months.

Solution

- Four-year international collaboration led by US Electric Power Research Institute.
- 2/3-scale pressure vessel upper and lower assemblies.
- Processes include electron beam welding, diode laser cladding, powder hipping.

Impact

- Section weld time (1.8m diameter, 80mm wall) reduced from 10 days to two hours.
- Less energy used 1,800kg CO₂ saved.

Cogeneration – NAMRC activities

- BEIS Low Carbon Hydrogen supply 2 competition (HYS2)
- HYS2 is the first significant Hydrogen theme competition of the £1 billion Net Zero Innovation Portfolio (NZIP) and builds on the Low Carbon Hydrogen Supply (HS1) competition.
- HS1 featured projects HyNet, Gigastack, Dolphin, Acorn, and HyPER
- Focus on Stream 1

入験

Department for

Cogeneration – NAMRC activities

- Nuclear AMRC and Frazer Nash
- Large CHP-powered H2 test facility designed to mimic the thermal outputs of all SMR/AMRs
- Focus on HTSE and thermochemical water splitting with electrolysis as a comparator
- Allows nuclear H2 to be matured on a <u>parallel</u> <u>track</u> to the AMR/SMR themselves then converge in 2030s – not wait for reactors to be ready first
- Operational by 2025
- Cost approx £6M
- Fits with BEIS AMR programme and HTGR focus
- Announcements early October

Figure 1: Comparison of different Nuclear Cogeneration Hydrogen Production Technology Efficiencies

Summary

- **Reliable** Nuclear can provide high-temperature heat 24/7 regardless of location or conditions (compared to electricity from solar or wind).
- **Clean** Zero carbon emissions. No reliance on CCUS.
- **Proximity** Small size of AMR/SMRs and passive safety designs should enable industrial and domestic co-location.
- Toolkit for 2050 Each reactor type has a different role to play based on outlet temperature and commercial readiness e.g. Gen III+ suited to district heating and H2 via electrolysis -> HTGR suited to H2 production via thermochemical water splitting
- **Demand** Invigorate the nuclear industry. The prospect of nuclear cogeneration creates additional pull for nuclear energy which helps to attract investors and drive down costs.
- **NAMRC** Working hard with industry and partners to identify and address the fundamental challenges in nuclear manufacturing to help realise the full potential of nuclear cogeneration.

SAVE THE DATE

Tuesday 16 and Wednesday 17 November Nuclear AMRC, Rotherham

Opportunities and challenges for the UK supply chain

Questions?

NUCLEAR AMRC ADVANCED MANUFACTURING RESEARCH CENTRE

web: namrc.co.uk

email: andrew.storer@namrc.co.uk / neil.murray@namrc.co.uk

tel: 0114 222 9900

Twitter: @NuclearAMRC