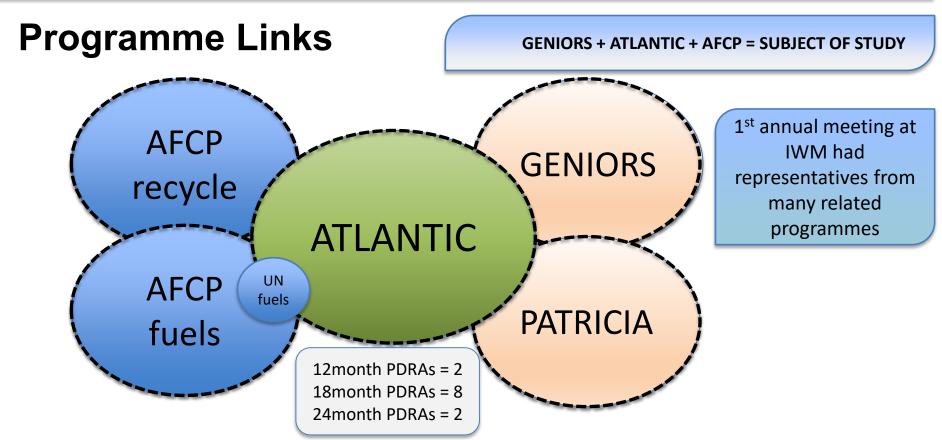



# ATLANTIC: Accident ToLerANT fuels In reCycling

PI – Prof. Bruce Hanson Nuclear Academics Discussion Meeting 7<sup>th</sup> to 8<sup>th</sup> September 2021 Cambridge Advanced Technology


















# Atlantic – technical highlights

•WP1 – Julio Vasquez-Chavez (UoL) is investigating voloxidation of fuels as a pretreatment for reprocessing; using air and steam on Zr. At >900°C the cladding forms a brittle oxide.

•WP2 - **Steve Faulkner (Oxford)** is measuring speciation by deconvolution. Developing methods to separate signals using time-, wavelength-, and temperature dependent luminescence spectroscopy.

•WP3 - **Rob Harrison (UoM)** working on Ce<sub>3</sub>Si<sub>2</sub> oxidation as U<sub>3</sub>Si<sub>2</sub> surrogate. TGA, XRD, HRTEM, STEM-EDS and EFTEM have confirmed the formation of CeO<sub>2</sub>, SiO<sub>2</sub> and Si up to 750°C in air.

•WP4 - **Eleanor Lawrence Bright (UoB)** is characterising corrosion and oxidation of UN surfaces using TEM, XRR, XPS. UN surface passivates at room temperature ( $U_2N_3$  interlayer forms).

•WP5 - **Ilka Schmueser (UoE)** is developing electrochemical sensors for process control. Use electrochemistry to generate a signal that tells you something about a target chemical.



WP1.3 UN Fuel Inventory at Higher Burnups **Using FISPIN** 

## Lancaster 🍱 University

#### Work carried out in AFCP Fuels Programme

Attempting to create the first UN SIMFuel • that replicates the chemical properties of thi material after removal from a reactor.

#### Model inventories used for the thermodynamic calculations

In spent fuel with the highest BU (60 MW d kg<sup>-1</sup> the solid solution comprises:

- 87 mol% UN, ٠
- Transuranics nitrides (AnN) 1.4 mol% (with 1.2 % ٠ PuN),
- Lanthanide nitrides (LnN) 2.5 mol% (with 1 mol% ٠ NdN)
- Transition metals (TrN) 1.7 mol%. ٠

| nis | Busine | ment for NAT<br>ss, Energy<br>strial Strategy | Advanced Fuel Cycle<br>Programme |                                  |
|-----|--------|-----------------------------------------------|----------------------------------|----------------------------------|
|     | #      | BURNUPS<br>(GWd/tU)                           | IRRADIATION<br>TIMES (YEARS)     | Nitride and<br>silicide SIMFUELS |
|     | 1      | 5                                             | 1⁄2                              | (AFCP)                           |
| -1) | 2      | 10                                            | 1                                |                                  |
| -)  | 3      | 15                                            | 11/2                             |                                  |
|     | 4      | 20                                            | 2                                |                                  |
|     | 5      | 25                                            | 21/2                             |                                  |
|     | 6      | 30                                            | 3                                |                                  |
|     | 7      | 35                                            | 31⁄2                             | Dissolution                      |
|     | 8      | 40                                            | 4                                | Trials<br>(ATLANTIC)             |
|     | 9      | 45                                            | 41⁄2                             |                                  |
|     | 10     | 50                                            | 5                                |                                  |
|     | 11     | 55                                            | 51/2                             |                                  |



### **WP2.2** Practical Statistical Modelling of Spent

### **Fuel Compositions**

MANCHESTER 1824

The University of Manchester

Create a dataset for Gen III(+) reactor systems (e.g. EPR) for ATLANTIC SF targets

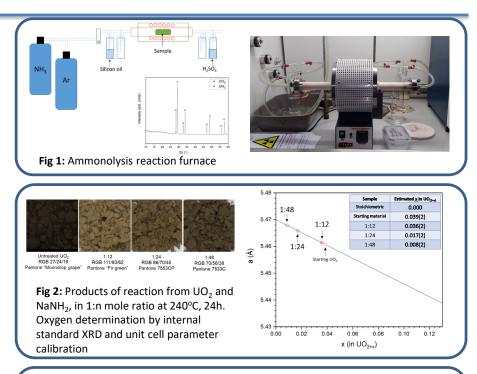
- To support our separations work, various key parameters required for unknown SNF compositions:
  - Elemental (g/tHM)
  - Decay Heat (W/tHM)
- Both can be derived from isotopic concentrations
- Calculate from basic input parameters:
  - Initial Enrichment (%235U or %Pu)
  - Burnup (GWd/tHM)
  - Post- Reactor Cooling Time (y)

| Isotopes | modelled |
|----------|----------|
|----------|----------|

| Light Fission Products                                                                                           | Heavy Fission Products                                                                                                              | Actinides                                                                                     |  |  |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| <sup>4</sup> He                                                                                                  | <sup>117</sup> Sn, <sup>118</sup> Sn, <sup>119</sup> Sn, <sup>120</sup> Sn, <sup>122</sup> Sn, <sup>124</sup> Sn, <sup>126</sup> Sn | <sup>234</sup> U, <sup>235</sup> U, <sup>236</sup> U, <sup>238</sup> U                        |  |  |
| <sup>77</sup> Se, <sup>78</sup> Se, <sup>79</sup> Se, <sup>80</sup> Se, <sup>82</sup> Se                         | <sup>121</sup> Sb, <sup>123</sup> Sb, <sup>125</sup> Sb                                                                             | <sup>237</sup> Np                                                                             |  |  |
| <sup>81</sup> Br                                                                                                 | <sup>125</sup> Te, <sup>126</sup> Te, <sup>128</sup> Te, <sup>130</sup> Te                                                          | <sup>238</sup> Pu, <sup>239</sup> Pu, <sup>240</sup> Pu, <sup>241</sup> Pu, <sup>242</sup> Pu |  |  |
| <sup>82</sup> Kr, <sup>83</sup> Kr, <sup>84</sup> Kr, <sup>85</sup> Kr, <sup>86</sup> Kr                         | <sup>127</sup>  , <sup>129</sup>                                                                                                    | <sup>241</sup> Am, <sup>242m</sup> Am, <sup>243</sup> Am                                      |  |  |
| <sup>85</sup> Rb, <sup>87</sup> Rb                                                                               | <sup>128</sup> Xe, <sup>130</sup> Xe, <sup>131</sup> Xe, <sup>132</sup> Xe, <sup>134</sup> Xe, <sup>136</sup> Xe                    | <sup>242</sup> Cm, <sup>243</sup> Cm, <sup>244</sup> Cm, <sup>245</sup> Cm, <sup>246</sup> Cm |  |  |
| <sup>86</sup> Sr, <sup>88</sup> Sr, <sup>89</sup> Sr, <sup>90</sup> Sr                                           | <sup>133</sup> Cs, <sup>134</sup> Cs, <sup>135</sup> Cs, <sup>137</sup> Cs                                                          |                                                                                               |  |  |
| <sup>89</sup> Y                                                                                                  | <sup>134</sup> Ba, <sup>135</sup> Ba, <sup>136</sup> Ba, <sup>137</sup> Ba, <sup>138</sup> Ba                                       |                                                                                               |  |  |
| 90Zr, 91Zr, 92Zr, 93Zr, 94Zr, 95Zr, 96Zr                                                                         | <sup>139</sup> La                                                                                                                   |                                                                                               |  |  |
| <sup>95</sup> Nb                                                                                                 | <sup>140</sup> Ce, <sup>141</sup> Ce, <sup>142</sup> Ce, <sup>144</sup> Ce                                                          |                                                                                               |  |  |
| <sup>95</sup> Mo, <sup>96</sup> Mo, <sup>97</sup> Mo, <sup>98</sup> Mo, <sup>100</sup> Mo                        | <sup>141</sup> Pr                                                                                                                   |                                                                                               |  |  |
| <sup>99</sup> Tc                                                                                                 | <sup>142</sup> Nd, <sup>143</sup> Nd, <sup>144</sup> Nd, <sup>145</sup> Nd, <sup>146</sup> Nd, <sup>148</sup> Nd,                   |                                                                                               |  |  |
|                                                                                                                  | <sup>150</sup> Nd                                                                                                                   |                                                                                               |  |  |
| <sup>100</sup> Ru, <sup>101</sup> Ru, <sup>102</sup> Ru, <sup>103</sup> Ru, <sup>104</sup> Ru, <sup>106</sup> Ru | <sup>147</sup> Pm, <sup>148m</sup> Pm                                                                                               |                                                                                               |  |  |
| <sup>103</sup> Rh                                                                                                | <sup>147</sup> Sm, <sup>148</sup> Sm, <sup>149</sup> Sm, <sup>150</sup> Sm, <sup>151</sup> Sm, <sup>152</sup> Sm,                   |                                                                                               |  |  |
|                                                                                                                  | <sup>154</sup> Sm                                                                                                                   |                                                                                               |  |  |
| <sup>104</sup> Pd, <sup>105</sup> Pd, <sup>106</sup> Pd, <sup>107</sup> Pd, <sup>108</sup> Pd, <sup>110</sup> Pd | <sup>153</sup> Eu, <sup>154</sup> Eu, <sup>155</sup> Eu                                                                             |                                                                                               |  |  |
| <sup>109</sup> Ag, <sup>110m</sup> Ag                                                                            | <sup>154</sup> Gd, <sup>156</sup> Gd, <sup>158</sup> Gd, <sup>160</sup> Gd                                                          |                                                                                               |  |  |
| <sup>110</sup> Cd, <sup>111</sup> Cd, <sup>114</sup> Cd                                                          | <sup>159</sup> Tb                                                                                                                   |                                                                                               |  |  |
| <sup>115</sup> In                                                                                                |                                                                                                                                     |                                                                                               |  |  |



### WP3.2 Synthesis of uranium nitride




#### Synthesis by reaction with ammonia gas

- An ammonolysis reaction furnace has been designed, tested and operated successfully – Fig 1.
- Ammonolysis of UF<sub>4</sub> proved partially successful, yielding phase assemblage of UN<sub>2</sub> and UO<sub>2</sub>,
- Exploring alternate route starting from NH<sub>4</sub>UF<sub>8</sub> precursor

#### Synthesis by low temperature with NaNH<sub>2</sub> molten salt

- Method used to synthesise transition metal nitrides from oxides by reaction in NaNH<sub>2</sub> molten salt at ca. 240°C for 24 h.
- Reaction between uranium oxides and NaNH<sub>2</sub> investigated; failed to form nitride phase, but reaction of UO<sub>2+x</sub> with NaNH<sub>2</sub> effects a low temperature reduction to stoichiometric UO<sub>2</sub>

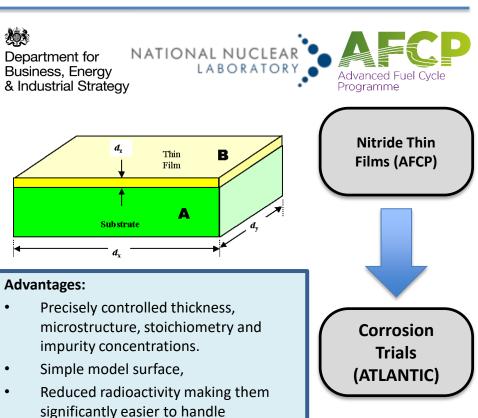


#### Recent publications from ATLANTIC and PACIFIC:

- A. Mason *et al.*, molten salt synthesis of Ce doped zirconolite for the immobilisation of pyroprocessing wastes and separated plutonium, Ceramics International, *in press*.
- S. Sun *et al.*, On the existence of the compound "Ce<sub>3</sub>NbO<sub>7+6</sub>" prepared under air atmosphere, Journal of Rare Earths, *in press*.



WP4.2 Fabrication and testing of uranium nitride thin films




#### Work carried out in AFCP Fuels Programme

 Fabrication of poly epitaxial and single crystal thin films of UN and U<sub>2</sub>N<sub>3</sub>

#### Next stage

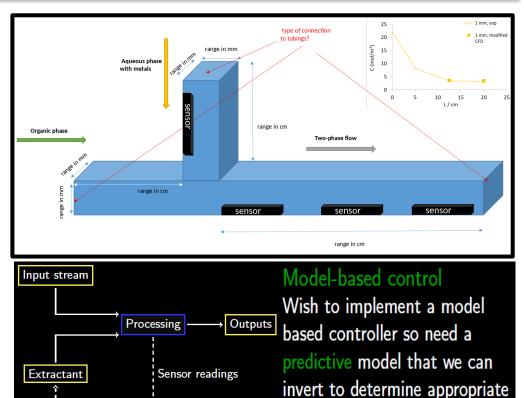
- Steam rig experiments Novoclave at 500 °C, 500 bar
- Dopants co-deposition within the films, e.g. Cr to investigate the effect on corrosion resistance
- Fuel-cladding interaction Deposition directly onto cladding materials
- Comparison between nitrides, oxides and silicides





WP5.1 Sensor placement and quantification of uncertainty of readings




changes in operation.

Determine number and placement of sensors in intensified operating units to enable

- Monitoring of performance for quality assurance and safety and
- Real time control of the processing.

Wish to design and operate an intensified processing unit:

- **Decision variables:** size, configuration, extractant, sensors, flow regime, . . .
- Measured variables: concentration in aqueous phase, flow regime ?
- Criteria for optimization: economic, number of sensors, performance, safety



Controller





## Atlantic – project status

|                                                                                                   | University |      | In Post | Started |
|---------------------------------------------------------------------------------------------------|------------|------|---------|---------|
| WP1 Fuel-Separations interface                                                                    |            |      |         |         |
| WP 1.1 Voloxidation as a pre treatment for accident tolerant fuels                                | Leeds      | PhD  |         |         |
| WP 1.2 The effect of scale up of dissolution kinetics                                             | Leeds      | PDRA |         |         |
| WP 1.3 Corrosion and Dissolution of Accident Tolerant Fuels under Conditions Relevant to Head End | Lancaster  | PDRA |         |         |
| WP 1.4 Molecular Simulation of the Corrosion of Accident Tolerant Fuels: A Modelling Study        | Lancaster  | PhD  |         |         |
| WP2 Effects of Contaminants on Separations                                                        |            |      |         |         |
| WP 2.1 Manufacture of functionalised BTPhen ligands                                               | Reading    | PDRA |         |         |
| WP 2.2 Radiation Stability Testing of Ligands                                                     | Manchester | PDRA |         |         |
| WP 2.3 Development of new tools to analyse speciation                                             | Oxford     | PDRA |         |         |
| WP3 Investigation and Optimisation of Accident Tolerant Fuel Materials                            |            |      |         |         |
| WP 3.1 Manufacture, Characterisation and Testing of Uranium Nitride Fuels                         | Sheffield  | PDRA |         |         |
| WP 3.2 Manufacture, Characterisation and Testing of Uranium Silicide Fuels                        | Manchester | PDRA |         |         |
| WP 3.3 Radiation Effects in Novel Accident Tolerant Fuels                                         | Liverpool  | PDRA |         |         |
| WP 3.3 Accident Tolerant Nuclear Fuels – Options and Designs (tbc)                                | Liverpool  | PhD  |         |         |
| WP4 Fuel Behaviour: non-stocihiometry and the fuel-water interface                                |            |      |         |         |
| WP 4.1 High Resolution NMR analysis of Uranium Silicides and Nitrides                             | Cambridge  | PDRA |         |         |
| WP 4.2 Corrosion Tests of Thin Film Uranium Silicides and Nitrides                                | Bristol    | PDRA |         |         |
| WP 4.3 Characterisation and Oxidation of Uranium Silicide Phases                                  | Bristol    | PhD  | •       |         |
| WP 4.4 Atomic scale modelling of UN fuel                                                          | Imperial   | PDRA |         |         |
| WP 4.5 Ab initio random structure searching to improve fabrication routes for U3Si2 and UN fuels  | Cambridge  | PhD  |         |         |
| WP5 Integrated Management of Accident Tolerant Fuels                                              |            |      |         |         |
| WP 5.1 Development of High Efficient Separation Technologies                                      | UCL        | PDRA |         |         |
| WP 5.2 Sensor Development and Optimal Placement                                                   | Edinburgh  | PDRA |         |         |

### Mid Term Review 25<sup>th</sup> March



# Conclusions

How has the research landscape, and therefore the role of ATLANTIC within it, changed since funding was awarded?

The proposal was submitted on the 28<sup>th</sup> March 2018 = AFCP + COVID + Brexit Deal on EU Research

Aim to provide a clear view on the Accident tolerant fuels and claddings (ATFC) technology of choice

- From a <u>fundamental science perspective</u> = proof of concept on manufacture of uranium nitride and silicide fuels;
- From a <u>technological perspective</u> = work so far (fuels) has raised the TRL to 2-3 and AFCP is taking over;
- From a <u>strategic perspective</u> = too early to call, but through AFCP Quarterly Meetings, BEIS are aware of ATLANTIC and its aims





# Acknowledgements



Engineering and Physical Sciences Research Council



