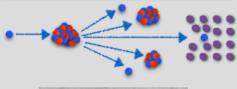
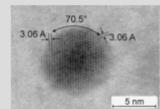


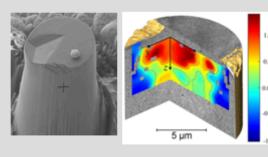
MAINTAIN: Multi-ScAle INTegrity for Advanced high-temperature Nuclear systems

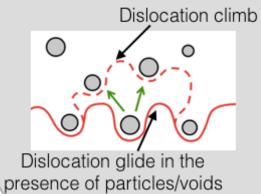
Investigators

- Bristol Mahmoud Mostafavi (PI), Peter Flewitt, Chris Truman
- Oxford Ed Tarleton, James Marrow, Dave Armstrong, Alan Cocks
- Manchester Joao Quinta da Fonseca
- Liverpool Karl Whittle, Eann Patterson (Phil Edmondson ORNL)


Aims

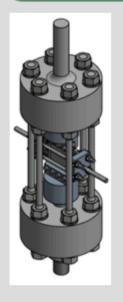

- Include the effects of radiation damage into SI creep codes
- Current and future material options
- How it impacts long term behaviour
 - Comparison between ions and neutron irradiated
- Validated Multiscale Modelling
 - Incorporation into codes such as R5

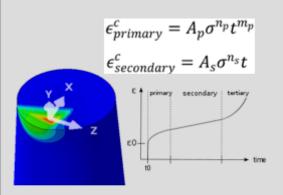



Methodology

WP1: Nano to Micro

10³


WP2: Micro to Meso



WP3: Meso to Macro

1020

Update

- Initial models developed next stage is to verify
- Neutron irradiated material analysis continues
- Working with EDF R&D (France) simulating the behavior of EPR RPV as it gets irradiated
- Incorporated into EU Project ENTENTE
- Integrated the method into EDF High Temperature Centre linked with AGRs

